Please use this identifier to cite or link to this item:
http://localhost:8080/xmlui/handle/123456789/4693
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Malavika. M | - |
dc.date.accessioned | 2025-03-27T05:41:54Z | - |
dc.date.available | 2025-03-27T05:41:54Z | - |
dc.date.issued | 2024-03-31 | - |
dc.identifier.uri | http://localhost:8080/xmlui/handle/123456789/4693 | - |
dc.publisher | St. Teresa' s College( autonomous) Ernakulam | en_US |
dc.title | DEEP LEARNING APPROACHES FOR WASTE CLASSIFICATION: A COMPARATIVE STUDY OF RESNET152, INCEPTION V3, AND VGG19 | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Theses/Dissertation/Projects |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Malavika M.PDF | 6.37 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.