ТВ154395С	Reg. No:
	Name•

B. Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2017 SEMESTER IV – CORE COURSE (MATHEMATICS) MT4B04B - VECTOR CALCULUS, THEORY OF EQUATIONS AND NUMERICAL METHODS

Time: Three Hours Maximum Marks: 80

PART A

I. Answer all questions. Each question carries 1 mark.

- 1. Find the parametric equation for the line through the origin and parallel to the vector 2j + k.
- 2. Write the vector function representing Helix.
- 3. Show that $F = (2x 3)i 2j + (\cos z)k$ is not conservative.
- 4. State Stokes' theorem.
- 5. Find two numbers a and b such that a real root of $f(x) = x^3 2x 5 = 0$ lies between a and b.
- 6. Find the sum of all roots of the equation $3x^3 9x 1 = 0$.

(6x1=6)

PART B

II. Answer any seven questions. Each question carries 2 marks.

- 7. Find an equation for the plane through $P_0(-3,0,7)$ perpendicular to n = 5i + 2j k.
- 8. Show that $r(t) = \cos(t) i + \sqrt{5} j + \sin(t) k$ has constant length and is orthogonal to its derivatives.
- 9. Find N for the Helix $r(t) = (a \cos t) i + (a \sin t) j + (bt) k$, a, b $0, a^2 + b^2 = 0$.
- 10. Show that the curvature of a circle of radius a is $\frac{1}{a}$.
- 11. Find the circulation of the field F = (x-y) i + (x) j around the circle $r(t) = (\cos t) i + (\sin t) j$ 0 t 2.
- 12. Evaluate $\int_C (x + y) ds$ where C is the straight line segment from x = t, y = 1 t, z = 0, from (0,1,0) to (1,0,0).
- 13. Find the work done by the force F = (xy)i + (y)j + (-yz)k over the curve $r(t) = t i + t^2 j + t k$, $0 \le t \le 1$.
- 14. Find the sum of the fourth powers of the roots of the equation x^4 $3x^3$ + $5x^2$ 12x + 4 = 0.
- 15. Solve the equation $x^4 + 20x^3 + 143x^2 + 430x + 462 = 0$ by removing its second term.
- 16. Obtain a root correct to two decimal places using bisection method for $x^3-2x-5=0$.

(7x2=14)

PART C

III. Answer any five questions. Each question carries 6 marks.

- 17. Find an equation for the plane through A (0,0,1), B (2,0,0) and C (0,3,0).
- 18. Find the unit tangent vector and unit normal vector for $\mathbf{r}(t) = t \ \mathbf{i} + \mathbf{t}^2 \mathbf{j}$.

1 P.T.O

- 19. Using divergence theorem evaluate $\iint_{S} (7x i z k) \cdot n d\sigma$ over the sphere $S: x^2 + y^2 + z^2 = 4$.
- 20. Find the area of the surface cut from the bottom of the paraboloid $x^2 + y^2 z = 0$ by the plane z = 4.
- 21. Find a real root of the equation $x = e^{-x}$ using the Newton Raphson Method
- 22. Use Iteration method to find a root of $\cos x = 3x 1$ correct to 3 significant figures.
- 23. Solve x^3 -9x-12 = 0 using Cardan's method.
- 24. If r, s, x are the roots of the equation $x^3 + qx + r = 0$. Find the equation whose roots are $(r s)^2$, $(s x)^2$, $(x r)^2$.

(5x6=30)

PART D

IV. Answer any two questions. Each question carries 15 marks.

- 25. Integrate $g(x,y,z) = x^2y^2z^2$ over the surface of the cube cut from the first octant by the planes x = 2, y = 2 and z = 2.
- 26. Use stoke's theorem to calculate the circulation of the field F = (2y) i + (3x) j (z2) k around the curve $C = x^2 + y^2 = 9$ in the xy plane counter clock wise.
- 27. Find a real root of the equation x^3 x -1 = 0 correct up to 3 decimal places using bisection method.
- 28. a) Show that the equation x⁴ + 5x³ + 9x² + 5x 1 = 0 can be transformed into a reciprocal equation by diminishing the roots by 2. Hence solve the equation.
 b) Prove that in a polynomial equation with real coefficients imaginary roots occur in conjugate pairs.

(2x15=30)