ГВ146650А	Reg. No		
	Name		

B. Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2017 SEMESTER VI - MATHEMATICS

MAT6OR - OPERATONS RESEARCH

Time: Three Hours Maximum Marks: 80

PART A

I. Answer all questions. Each question carries 1 mark.

- 1. Define basis of a vector space.
- 2. Define Euclidean norm of an n-dimensional vector space.
- 3. What is meant by a convex set?
- 4. What is a convex polyhedron?
- 5. Differentiate between slack and surplus variables.
- 6. When can we say that a transportation problem is balanced?
- 7. What is a triangular basis?
- 8. Define service utilisation factor of a queuing system.
- 9. Give examples of static queue disciplines.
- 10. Discuss various behaviour of arrivals in a queuing system

(10x1=10)

PART B

II. Answer any eight questions. Each question carries 2 marks

- 11. Is the set {[1,2,-1],[2,4,-2]} linearly independent? Justify your answer.
- 12. Give an example of a bounded set in R₂
- 13. Interpret the norm $||X|| = |x_1| + |x_2|$ in E_2 geometrically.
- 14. Discuss Degeneracy in a linear programming problem.
- 15. Write the following LPP in standard form.

Min
$$x_1 + x_2$$
 subject to $2x_1 + x_2 \ge 8$, $3x_1 + 7x_2 \ge 21$, $x_1, x_2 \ge 0$

16. Write the dual of the following LPP.

Mi:
$$6x_1 + 3x_2$$
 subject to $3x_1 + 4x_2 + x_3 \ge 5$, $6x_1 - 3x_2 + x_3 \ge 2$, $x_1, x_2, x_3 \ge 0$

- 17. Define a closed loop in a transportation array.
- 18. Obtain a basic feasible solution to the following transportation problem using north west corner rule.

	D1	D2	D3	D4	1
S1	1	2	1	4	30
S2	3	3	2	1	30
S 3	4	2	5	9	40

1

(P.T.O)

- 19. Define an assignment problem.
- 20. Define steady state and transient state of a queuing system
- 21. What are the essential features of a queuing system?
- 22. State Markovian property of inter arrival times.

(8x2=16)

PART C

III. Answer any six questions. Each question carries 4 marks.

- 23. Show that $w = \{X \text{ such that } X = (x_1, 0, x_2, x_3, \dots, x_n)\}$ is a subspace of the vector space R_n
- 24. Show that if |X + Y| = |X| + |Y|, then either $Y = \lambda X$ or X = 0 or Y = 0
- 25. Show that if the set S_F of feasible solutions, if not empty, is a closed convex set bounded from below and so has at least one vertex
- 26. Show that dual of dual is the primal
- 27. Solve the following assignment problem

	1	2	3
A	120	100	80
В	80	90	110
C	110	140	120

- 28. Explain MODI method in a transportation problem.
- 29. Describe the matrix form of a transportation problem.
- 30. If the number of arrivals in a pure birth process follows poisson distribution, then find the probability distribution of inter arrival times.
- 31. In a queuing system, on an average 4 customers arrive after every minutes. Find
- (i) P(no more than 2 minutes gap between successive arrivals)
- (ii) Average time between successive aarivals
- (iii) P(inter arrival times)

(6x4=24)

PART D

IV. Answer any two questions. Each question carries 15 marks

32. Solve the following LPP using simplex method. $Maximize\ Z = 3x_1 + 5x_2 + 4x_3$, subject to $2x_1 + 3x_2 \le 8$, $2x_2 + 5x_3 \le 10$, $3x_1 + 2x_2 + 4x_3 \le 15$, $x_1, x_2, x_3 \ge 0$

33. Use Big M Method to solve Minimize $Z = 5x_1 + 3x_2$, subject to $2x_1 + 4x_2 \le 12$, $2x_1 + 2x_2 = 10$, $5x_1 + 2x_2 \ge 10$, $x_1, x_2 \ge 0$

34. Sole the following transportation problem for optimal solution.

	D1	D2	D3	D4	
S1	19	30	50	10	7
S2	70	30	40	60	9
S3	40	8	70	20	18
	5	8	7	14	

35. Explain all queue disciplines ans service mechanisms of a queuing system.

(2x15=30)