B.Sc. DEGREE (CBCSS) EXAMINATION, APRIL 2015 SECOND SEMESTER – COMPLEMENTARY COURSE (STATISTICS) STA2TRV – THEORY OF RANDOM VARIABLES (COMMON FOR MATHEMATICS, PHYSICS & COMUTER APPLICATIONS)

Time: 3 hours Max: 80 marks

Use of Scientific calculators and Statistical tables are permitted

Part A (Short Answer Questions) Answer all questions. Each question carries 1 mark

- 1. Define a random variable.
- 2. What are the properties of a probability density function?
- 3. State the condition for independence of two random variables.
- 4. Define characteristic function of a random variable.
- 5. If *X* is a random variable, show that $E(X^2) \ge [E(X)]^2$.
- 6. Find the moment generating function of a random variable X with probability density function f(x) = 1, 0 < x < 1.
- 7. Define skewness.
- 8. Give the formula for computing Spearman's rank correlation coefficient.
- 9. What would be your interpretation if the correlation coefficient is 0?
- 10. If the variables are independent what will be the angle between the regression lines?

(10x1 = 10 marks)

Part B (Brief Answer Questions) Answer any eight questions. Each question carries 2 marks

- 11. Define distribution function of a random variable and state its properties.
- 12. For the *p.m.f*, $f(x) = C\left(\frac{1}{2}\right)^x$, $x = 0, 1, 2, \dots$, evaluate the constant C.
- 13. Given that $f(x) = 3x^2$; 0 < x < 1 is a *p.d.f*. Determine the *p.d.f* of $Y = X^2$.
- 14. State and prove addition theorem on Expectation of two random variables.
- 15. If *X* and *Y* are two independent random variables with characteristic functions $\{x_i(t)\}$ and $\{x_i(t)\}$ respectively, show that $\{x_{i+1}(t)\}$ is $\{x_i(t)\}$ in $\{x_i(t)\}$ and $\{x_i(t)\}$ in $\{x_i(t)\}$ in
- 16. If X is a random variable with p.m.f, f(x) = x/6; for x = 1, 2, 3. Find the mean and variance of X.
- 17. Define raw and central moments.
- 18. Define Kurtosis. What are the types of kurtosis?
- 19. What is a scatter diagram? How is it constructed?
- 20. Show that $r_{xy}^2 = b_{xy} \times b_{yx}$.
- 21. Karl Pearson's coefficient of correlation of two variables *x* and *y* is 0.8. Their covariance is 40. If the variance of *x* is 16, find the standard deviation of *y*.
- 22. Write the normal equations for fitting a parabola $y = a + bx + cx^2$.

(8x2 = 16 marks)

Part C (Short Essay Questions) Answer any six questions. Each question carries 4 marks

- 23. The joint probability mass function of a bivariate r.v (X,Y) is given by: $f(x,y) = \frac{x+y}{18}$, x = 0,1,2 and y = 0,1,2. Find marginal distributions of X and Y.
- 24. Examine whether the variables X and Y are independent if the joint p.d.f of (X,Y) is given by f(x,y) = 6(x-y); 0 < y < x < 1.
- 25. Find the covariance between *X* and *Y* if $f(x, y) = x + y, 0 \le x, y \le 1$.
- 26. If the m.g.f. of a random variable X is $M_X(t) = (1-t)^{-1}$, find the measure S_1 .
- 27. Find E(X | Y) if the joint p.d.f is f(x, y) = 8xy, 0 < x < y < 1.
- 28. Show that $S_2 > 1$ for a discrete distribution.
- 29. Derive the expression for Spearman's rank correlation coefficient.
- 30. Find the Karl Pearson's coefficient of correlation for the following data

x	-2	-1	1	2
y	4	1	1	4

31. How will you fit a curve of the form $y = ae^{bx}$?

(6x4 = 24 marks)

Part D (Essay Questions) Answer any *two* questions. Each question carries 15 marks

- 32. Two random variables X and Y have the following joint density function: f(x,y) = k(4-x-y), if $0 \le x \le 2$, $0 \le y \le 2$. Find i) the value of k, ii) the marginal density functions, iii) Conditional density functions and iv) $E(X^2Y)$.
- 33. Examine the nature of skewness and kurtosis for the following data using the measures S_1 and S_2 .

Class	0-10	10-20	20-30	30-40
Frequency	1	3	4	2

34. The following table consists of the test scores of 6 randomly selected students and the number of hours they studied for the test. Obtain the regression equation for the test score related to hours of preparation:

Hours of preparation (x)	2	10	4	6	8	9
Test score (y)	8	46	19	26	30	32

Estimate the test score of a student who studied 5 hours for the test.

35. Given that 8x-10y+66=0 and 40x-18y-214=0 are the regression lines,

i) identify the regression lines and find (ii) the correlation coefficient, iii) the mean values of x and y, iv) the ratio of variances of x and y.

(2x15 = 30 marks)