ГВ141310	Reg No

Name	•••
------	-----

B.Sc. DEGREE (C.B.C.S.S) EXAMINATION, NOVEMBER -2014 MATHEMATICS – FIRST SEMESTER- CORE COURSE (COMMON FOR B.Sc. MATHEMATICS AND B.Sc. COMPUTER APPLICATIONS) MAT1FM-FOUNDATION OF MATHEMATICS

Time: 3hrs. Max.Marks:80

Part A

Short answer questions (Answer **all** questions. Each question carries 1 mark)

- 1. Find A x B x C if $A=\{x,y\}$, $B=\{1,2,3\}$ and $C=\{0,1\}$
- 2. Find $\sum_{i=0}^{10} (i+6)$.
- 3. Find two sets A and B such that A \in B and A \subseteq B
- 4. Define a transitive relation on a set A.
- 5. Represent the relation $R=\{(1,1), (1,2), (1,3), (3,4)\}$ on $\{1,2,3,4\}$ using a directed graph.
- 6. Give an example of a lattice.
- 7. Write the converse of the statement "If the space shuttle was launched, then a cloud of smoke was seen."
- 8. Let p and q be propositions
 - p: 2 is a prime number
 - q: 4 is a perfect square

Write the proposition 2 is a prime number or 4 is a perfect square using logical connectives.

- 9. Find $\Phi(1024)$, the Euler phi function.
- 10. State Fermat's theorem.

 $(10 \times 1 = 10)$

(P.T.O.)

Part B

Brief answer questions (Answer any **eight** questions. Each question carries 2 marks)

- 11. Why $f(x)=\sqrt{x}$ is not a function from \mathbb{R} to \mathbb{R}
- 12. Find $f \circ g$ and $g \circ f$ where f and g are two function from set of integers onto itself defined by $f(x)=x^3$ and g(x)=2x+9
- 13. State De Morgan's laws for sets.
- 14. If $M_R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$ find the matrix representing its inverse relation.
- 15. Give an example of a relation which is symmetric but not transitive.
- 16. Write down $[1]_5$ and $[2]_5$, the equivalence classes of modulo 5.
- 17. Let p(x) be the statement x+1>x. what is the truth value of $\forall x p(x)$, where the universe of discourse consists of all real numbers and justify your answer?
- 18. Construct a truth table for the compound proposition $(p \lor q) \oplus (p \land q)$
- 19. Translate into logic "Some integers are even and some are odd" where the universe of discourse consists of all integers.
- 20. Find the highest power of 7 contained in 900!
- 21. Show that n^7 -n=M(42)
- 22. Find the remainder when 2^{1000} is divided by 17.

(8x2=16)

Part C

Descriptive (short essay questions)
(Answer any **six** questions. Each question carries 4 marks)

- 23. How many relations are there on a set with n elements. How many of them are reflexive?
- 24. Show that the function f(x) = 3x + 4 is a bijection on set of integers also find the inverse.
- 25. Show that the relation (a,b) R (c,d) \Leftrightarrow a+d=b+c is an equivalence relation on the set of real numbers.

- 26. Represent the relation $R=\{(1,2), (2,3), (3,3), (3,2), (3,4), (4,2)\}$ on $\{1,2,3,4\}$ using
 - i) Matrix
 - ii) Directed graph
- 27. Show the (p q)V(q p) is a tautology.
- 28. Write the converse, inverse, contra positive and biconditional statement of "If you play tennis, then you're an athlete."
- 29. Prove that "n is odd, if and only if 5n+6 is odd", where n is an integer.
- 30. Show that $3^{2n+1} + 2^{n+2}$ is divisible by 7.
- 31. Show 18!+1 is divisible by 437.

(6x4=24)

Part D

Essay type questions
(Answer any **two** questions. Each question carries 15 marks)

- 32. i). Using membership table show $AU(B \cap C) = (A \cup B) \cap (A \cup C)$.
 - ii). Show that set of all integers is countable.
 - iii). Define floor function and ceiling functions and draw the graphs of both functions.
- 33. Show that following statements are equivalent
 - i) n² is odd
 - ii) 1-n is even
 - iii) n³ is odd
 - iv) $n^2 + 1$ is even
- 34. i) Show that p q and $\neg p \lor q$ are logically equivalent.
 - ii) Prove that $\sqrt{2}$ is irrational by giving a proof by contradiction.
 - iii) Which rule of inference is used in the following argument?

"If you have a current password, then you can log onto the network"

"You have a current password"

Therefore: "You can log onto the network"

(P.T.O.)

- 35. i) Solve 5x 2(mod 7)
 - ii) Show that 27 and 48 are prime to each other using Euclidean algorithm
 - iii) Prove that if m is prime to n, then (mn)=(m) (n).

(2 x15 = 30 marks)