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ABSTRACT

asting to inform policy

Juvenile delinquency is a critical social issue that requires accurale forcc . :
ates in India

and intervention strategics. This study analyzes trends in juvenile delinquency T
+ from 1970 10 2022 using time serics forecasting techniques. The research cmploys five kc]:y
mcethodologics: ARIMA Modcling, Lincar Regression, Exponential Sn:mothmg and Holt-
Winters Forecasting to examine historical trends and predict future delinquency rates. Thc
ARIMA model was used to forceast delinquency rates for 2023 to 2027, dcmonslrahng its
ability to handle non-seasonal patterns. Linear Regression provided a “'c"d. analysis of
delinquency over the years, while Exponential Smoothing and the Holt-Winters Model

captured both trend and seasonal variations.

A comparative analysis of ARIMA and Holt-Winters Forecasting was conducted using RMSE
Values to assess predictive performance. The results indicate that the Holt-Winters qucl
outperforms ARIMA, with a lower RMSE value, making it the preferred model for forecgstmg
Juvenile delinquency trends. The study’s findings contribute to a decper_ understanding of
delinquency patterns in India and provide a data-driven foundation for policymakers and law
enforcement agencies to develop effective preventive measures.

Keywords: Juvenile Delinquency, Time Series Forecasting, ARIMA, Holt-Winters Model,
Linear Regression, Exponential Smoothing, RMSE.
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A STATISTICAL STUDY ON JUVENILE DELINQUENCY IN INDIA

Chapter 1

INTRODUCTION

Constantly shown that poverty, ignorance, and unstable family surroundings contribute
significantly to juvenile delinquency. Children from economically weaker sections are more
vulnerable to engaging in unlawful conditioning due to lack of education, employment
openings, and social support systems (Acharya, S, 2017). Rajasthan has a high academy
powerhouse rate, leading to increased exposure to negative influences and lower openings for
legal employment, which can push kids toward crime (Atrey. I & Singh. B, 2023). The analysis
of statistical data available at functionary spots indicates that there's an increase of youth
involvement in heinous crimes (Dhaka, s. K., 2021). The study involves the data collection,
preprocessing, exploratory data analysis, model development and evaluation criteria (Jain, H.,
& Patel, R., 2024). tis revealed from the study that, no particular reason is responsible for kids’
delinquency- a variety of reasons are responsible for this (Haveripet, P., 2013). The Indian
Legislature and Judiciary have shown perceptivity and responsiveness in securing the rights of
the kids. The “Juvenile Justice Act, 2015 was legislated to insure that the law related to kids
keep pace with the changing times (Khan, S., 2022). A responsible society it's a duty to keep
an eye on this particular age group people, so that they could be corrected at the right time if
set up shamefaced at any point during this period (Hazarika, J., & Goswami, D, 2020). The
origins of felonious behaviour in youth are a complex matter; delinquency is often predictable

early in some children's lives (Sharma, B. R., Dhillon, S., & Bano, S., 2009)

Juvenile delinquency is a growing concern in India, affecting not only the individuals involved
but also society at large. It refers to illegal or antisocial behaviour committed by individuals
under the age of 18. Understanding the trends and patterns of juvenile delinquency is pivotal
for developing effective programs and preventative measures to check youth crime. The
juvenile delinquency rate is told by colourful socio profitable factors similar as poverty,
education, family background, peer influence, and government programs. Analysing the literal
trends in juvenile crime can give precious perceptivity into the effectiveness of being laws,
recuperation programs, and socio- profitable development sweats aimed at reducing youth
offenses. This study focuses on examining and vaticinating juvenile delinquency trends in India

from 1970 to 2022 using statistical styles.

The dataset consists of two crucial variables
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1. Time (1970- 2022) — Representing the timeline of recorded delinquency data.
2. Juvenile Delinquency Rate — The number of offenses committed by kids per time.

The exploration will employ time series analysis ways, including Exponential Smoothing,
Holt- Winters Method, ARIMA, and Machine literacy models to assay once trends and
prognosticate unborn delinquency rates. These soothsaying models will help policymakers and
law enforcement agencies anticipate implicit unborn trends and make data- driven opinions to
address juvenile crime effectively. By conducting this statistical study, we aim to give a
comprehensive understanding of the patterns and oscillations in juvenile delinquency in India,
which can contribute to the development of better crime forestallment strategies, recuperation

programs, and social programs to cover and guide the youth towards a positive future.
1.1 Objectives of the Study

1. To forecast future juvenile delinquency rates using ARIMA model.
2. To analysis trends line in juvenile delinquency rates over Linear Regression.

3. To model & forecast the future values of rice price for Ernakulam District using

Exponential smoothing.

4. To compare the forecast by ARIMA and Exponential smoothing to find best model
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Chapter 2

REVIEW OF LITERATURE

1. Sharma (2009) proposed that Juvenile delinquency is a global issue, intensified in
developing countries by rapid socio-economic shifts. Urbanization,
industrialization, and migration weaken traditional controls, increasing youth
crime. Research links adverse childhood experiences to delinquency, stressing early
intervention. Despite extensive studies, gaps remain in India’s long-term trends,
with most focusing on short-term analyses. This study fills that gap by analyzing
juvenile delinquency from 1970 to 2022 using statistical methods. Unlike prior
qualitative studies, it employs a quantitative time-series approach, integrating
historical, socio-economic, and policy factors for objective, data-driven insights.

2. Agyemang (2012) proposed that Community policing is an effective crime
prevention strategy, enhancing police-community collaboration and reducing
crime. However, its impact varies based on implementation and socio-economic
factors. Existing studies often rely on qualitative or short-term analyses, lacking
empirical validation of long-term effects. This study fills that gap using ARIMA
intervention analysis to assess Ghana’s Community Policing Unit (2000-2011).
Findings show a statistically significant yet temporary crime reduction of 16 cases
per month, with a long-term decrease of 16.23 cases. Unlike prior qualitative
research, this study employs a quantitative time-series approach, ensuring objective,
data-driven insights while avoiding redundancy.

3. Haveripet (2013) proposed that Juvenile delinquency is a global issue, with 10.2
offenders per 100,000 population worldwide and 0.9—-1% of total crimes in India.
Key causes include family conflict, socio-economic conditions, lack of supervision,
media influence, and child abuse, which lower self-esteem and increase criminal
tendencies. Despite research, gaps remain in understanding long-term trends and
socio-economic influences on juvenile delinquency in India. Most studies focus on
specific causes rather than comprehensive statistical analysis or the impact of
rehabilitation efforts. This study fills these gaps by analyzing juvenile delinquency
trends in India (1970-2022) through quantitative time-series analysis, integrating

historical and socio-economic factors for objective, data-driven insights.
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4. Acharya (2017) proposed that Juvenile delinquency is driven by psychological
factors, with poverty, illiteracy, and family disturbances as key causes. Perceived
abuse leads to crime, while community rehabilitation is favoured over harsh
punishment. Despite media focus, most juvenile crimes are non-violent. Gaps
remain in quantifying long-term psychological and socio-economic influences.
Research largely focuses on case studies rather than statistical trends, with limited
empirical analysis of rehabilitation. This study fills these gaps by analyzing juvenile
delinquency trends in India (1970-2022) using statistical time-series analysis,
integrating psychological and socio-economic factors for objective insights into
crime patterns and prevention.

5. Khairuddin et al (2019) proposed that Crime forecasting has evolved from statistical
models to artificial intelligence (Al)-based models, with Al proving more effective
in handling nonlinear crime patterns. While statistical models work well for linear
and small datasets, Al techniques, particularly deep learning models, offer greater
accuracy by adapting to complex crime distributions. However, gaps remain in
long-term crime trend analysis and integrating socio-economic factors such as
unemployment and GDP into forecasting models. Most studies focus on short-term
predictions without considering broader influences on crime trends. This study
addresses these gaps by applying time-series forecasting to juvenile delinquency
trends in India (1970-2022) using Al-based models like RNN-LSTM. By
incorporating multivariate analysis, it improves crime trend predictions and
provides data-driven insights for policy interventions.

6. Deviand Kavitha (2021) proposed that Crime forecasting using time-series analysis
and machine learning is crucial for predictive policing. Studies highlight deep
learning models, especially Recurrent Neural Networks (RNN), for accurate crime
trend predictions. The N-Beats RNN model enhances forecasting through data
preprocessing and hyperparameter tuning. However, research mainly focuses on
short-term predictions, lacking long-term trend analysis and integration of socio-
economic factors. This study fills these gaps by applying RNN-LSTM models to
forecast juvenile delinquency trends in India (1970-2022), ensuring high accuracy
and a data-driven approach to crime analysis and prevention.

7. Dhaka (2021) proposed that Juvenile delinquency is rising globally, with India
witnessing increasing youth involvement in crimes. The Indian legal system has

responded by amending the Juvenile Justice Act, allowing juveniles involved in
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heinous crimes to be tried as adults under Juvenile Justice Board supervision.
Despite legal reforms, gaps remain in understanding long-term trends and the
effectiveness of policy changes. Most studies analyze legal provisions rather than
statistical patterns of juvenile crime over time. This study bridges these gaps by
analyzing juvenile delinquency trends in India (1970-2022) through time-series
analysis, offering empirical insights into policy impact and crime patterns.

8. Khan (2022) proposed that Juvenile delinquency in India, driven by socio-economic
factors, psychological distress, and systemic challenges, continues to rise despite
legal reforms like the Juvenile Justice Act, 2015. The Act, influenced by the
Nirbhaya case, introduced stricter provisions, including trial of 16-year-olds as
adults for heinous crimes. However, gaps remain in understanding socio-economic
drivers and assessing legal interventions over time. Existing studies focus on
judicial responses but lack long-term statistical analysis of crime patterns. This
study fills the gap by analyzing juvenile delinquency trends (1970-2022) using
time-series analysis, integrating sociological and legal perspectives to evaluate
policy impact and intervention effectiveness.

9. Atrey and Singh (2023) proposed that Juvenile delinquency in Rajasthan is driven
by family conflict, peer influence, poverty, child marriage, and school-related
factors, with serious social consequences. Studies show that poor parental
supervision, low academic performance, and mental health issues significantly
contribute to juvenile crime. Existing research highlights the prevalence of
delinquency and the legal framework but lacks long-term statistical analysis of
trends and the effectiveness of preventive measures. This study bridges these gaps
by analyzing juvenile delinquency trends (1970-2022) using time-series analysis,
integrating sociological, psychological, and legal perspectives. By evaluating risk
factors and policy interventions, it provides data-driven insights for more effective
prevention strategies in Rajasthan.

10. Muthamizharasan and Ponnusamy (2024) proposed that Crime forecasting is
crucial for law enforcement and public safety, with ARIMA and LSTM as key
models. ARIMA predicts linear patterns but struggles with complex trends, while
LSTM captures long-term dependencies, making it better for dynamic crime trends.
Research confirms LSTM’s superiority, but comparative studies on long-term
juvenile delinquency trends remain scarce. Few studies explore hybrid models

(CNN-LSTM) or socio-economic factors in crime forecasting. This study fills these
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gaps by applying LSTM-based forecasting to juvenile delinquency in India (1970—
2022), comparing it with ARIMA. By merging time-series analysis and machine

learning, it improves predictive accuracy and informs policy decisions.
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Chapter 3

MATERIALS AND METHODS

3.1 DATA SOURCE

The data correspond of reported incidents of cases about juvenile delinquency in India

1970 — 2022

The dataset contains 2 variables. It consists of reported incidents of juvenile delinquency

cases in India from 1970 to 2022. Below are the crucial features of the data

1. Year: This variable represents the specific time for which the juvenile delinquency data

has been recorded. The dataset follows a chronological order from 1970 to 2022.

2. Delinquency Rate: This variable indicates the number of reported juvenile delinquency
cases per a specified population for each time. It helps in assaying trends over time and

understanding the oscillations in juvenile crime rates.

This dataset allows for statistical analysis to examine long- term trends in juvenile
delinquency, identify implicit factors impacting changes, and make data- driven policy

recommendations.

3.2 PYTHON PROGRAMMING LANGUAGE

In this project, Python was extensively used for data analysis, statistical modeling, and
time series forecasting of juvenile delinquency rates in India from 1970 to 2022. Python’s
powerful libraries, including Pandas and NumPy, were utilized for data preprocessing and
manipulation, while Matplotlib and Seaborn were employed for visualizing trends and
patterns. Time series forecasting techniques, such as ARIMA, Linear Regression,
Exponential Smoothing, and the Holt-Winters Model, were implemented using the
Statistical models and Scikit-learn libraries. RMSE values were calculated to evaluate
model performance, ensuring accurate comparisons. Python’s efficiency in handling large
datasets and automation capabilities streamlined the analysis, making it an essential tool

for deriving meaningful insights and predictions in this study.
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3.3 MICROSOFT EXCEL

In this project, Microsoft Excel was extensively used for organizing, analyzing, and
visualizing juvenile delinquency data in India from 1970 to 2022. Excel’s functions and
formulas were applied for data preprocessing, trend analysis, and statistical calculations.
PivotTables and charts were utilized to summarize and present delinquency trends
effectively. Time series forecasting techniques, including ARIMA, Linear Regression,
Exponential Smoothing, and the Holt-Winters Model, were implemented using Excel’s
built-in tools and add-ins. RMSE values were calculated to compare model performance.
Additionally, Excel’s automation features, such as Macros, streamlined repetitive tasks,

enhancing efficiency in data handling and analysis.

3.4 TIME SERIES

A time series is a sequence of data points recorded at consistent time intervals such as daily,
monthly, or yearly, used to track changes over time. It is widely applied in fields like finance,
economics, meteorology, and social sciences. Examples include daily stock market prices,
annual rainfall data, and monthly sales revenue of a company. Understanding time series is

crucial for analyzing trends, identifying patterns, and making future predictions.
1. Time Series Analysis

Time series analysis involves examining historical data to identify trends, patterns, and
relationships over time. This analysis is used to forecast future values and make informed
decisions. It includes statistical techniques to study underlying behaviors in data and derive
insights. For example, a company analyzing past sales data to predict future demand for its

products or a government analyzing unemployment rates to assess economic policies.
2. Secular Trend (Tt)

A secular trend represents the long-term upward or downward movement in a time series over
an extended period. It reflects the overall direction of data while ignoring short-term

fluctuations.

Upward Trend: Population growth, increasing e-commerce sales, rising global

temperatures.
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Downward Trend: Declining birth rates, decreasing landline telephone usage, reduced

illiteracy rates.

For instance, the long-term increase in internet usage worldwide represents an upward trend,

while the decline in the use of printed newspapers shows a downward trend.
3. Seasonal Fluctuations (St)

Seasonal fluctuations are repetitive patterns that occur at fixed intervals, such as annually,
quarterly, or monthly, due to seasonal factors like weather, holidays, or cultural events. These

patterns repeat over time and influence business and economic activities.
4. Cyclic Fluctuations (Ct)

Cyclic fluctuations are variations that occur over a period longer than a year and follow
economic or business cycles, which consist of phases like expansion, recession, depression,

and recovery. Unlike seasonal trends, cyclic changes do not have a fixed periodicity.
5. Irregular Fluctuations (It)

Irregular fluctuations are unpredictable and sudden changes in a time series caused by
unexpected events such as natural disasters, political instability, pandemics, or financial crises.

These fluctuations do not follow any specific pattern and are usually temporary.

Understanding these components of a time series helps in making more accurate forecasts,

planning business strategies, and improving decision-making in various industries.

3.4.1 Simple Moving Average

The Simple Moving Average (SMA) is a widely used time series analysis technique that
smooths data by calculating the average of a fixed number of consecutive values over a
specific period. This method helps to reduce short-term fluctuations, making it easier to
identify underlying trends and patterns in the data. By continuously updating as new data
points are added, SMA provides a clearer view of long-term movements, filtering out
random noise and volatility. It is extensively applied in financial markets for stock price
analysis, where investors use it to detect trends and potential buy/sell signals. Similarly,
businesses use SMA for sales forecasting, inventory management, and demand prediction,

ensuring better decision-making and resource planning. The choice of the period length
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(e.g., 10-day, 50-day, or 200-day SMA) depends on the level of trend analysis required—
short-term or long-term. Despite its simplicity, SMA is a powerful tool for analyzing
historical data trends, improving forecasting accuracy, and supporting strategic planning in

various fields.

3.4.2 Auto-Regressive (AR) Process

An Autoregressive (AR) process is a fundamental concept in time series analysis,
representing a type of stochastic process where current values in a series are linearly
dependent on their past values plus a random error term. It is commonly used for modeling
time-dependent data, where the assumption is that past observations influence future
values. The general form of an autoregressive process of order p, denoted as AR(p),
expresses a time series value as a linear combination of its p previous values, along with a
white noise error term to account for random variations. Mathematically, it is represented

as:
Xe= 01Xy + DX g T DX p T &
Where:
X, is the value at time t.
D1, D2, ...., D, are the finite set of weight parameters.

& 1s the white noise term or errors at time t.

The AR process is widely used in various fields such as finance, economics, climatology,
and engineering for modeling and forecasting time-dependent data. For example, in
financial markets, AR models help predict stock prices, exchange rates, and interest rates
by analyzing past trends. In meteorology, they are used to model temperature fluctuations
and weather patterns. The choice of order p determines how many past values influence the
current observation, and this order is typically selected using criteria like the Akaike
Information Criterion (AIC) or Bayesian Information Criterion (BIC). The AR process is a
key component of more advanced models like Autoregressive Integrated Moving Average
(ARIMA) and is essential for understanding time series dynamics and making reliable

future predictions.
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3.4.3 Moving Average (MA) Process

A Moving Average (MA) process is a fundamental stochastic process used in time series
analysis to model a sequence of random variables, where each value in the series is expressed
as a linear combination of current and past white noise (error) terms. Unlike an Autoregressive
(AR) process, which relies on past values of the time series itself, an MA process depends
solely on past forecast errors, making it useful for capturing short-term dependencies and

smoothing fluctuations in time series data.

The general form of a Moving Average process of order q denoted as MA(q), can be expressed

as:
Xt= 01611 + 0265 +....+046_q T
where:
X, is the value at time t.
01, B3, ..... ,04 are the moving average coefficients.
q is the order of the MA process.
& 1s the white noise term.

The MA process is particularly useful for modeling time series data that exhibit short-term
dependencies but no long-term trend, such as financial returns, economic indicators, and
temperature anomalies. It helps smooth out random fluctuations by averaging past errors,

making it valuable for forecasting, signal processing, and economic modeling.

A key advantage of the MA model is its ability to capture shocks or sudden changes in data
since each observation is directly influenced by recent random disturbances. It is widely used
in combination with AR models in more advanced frameworks like the Autoregressive Moving
Average (ARMA) model and the Autoregressive Integrated Moving Average (ARIMA) model,
which are essential for predictive analytics and trend analysis. The order q of the MA process
is usually determined using statistical techniques such as the Autocorrelation Function (ACF)
and model selection criteria like the Akaike Information Criterion (AIC) or Bayesian

Information Criterion (BIC).
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3.4.4 Auto-Regressive Integrated Moving Average (ARIMA) Model

The Autoregressive Integrated Moving Average (ARIMA) model is one of the most widely

used methods for time series forecasting, combining autoregressive (AR), differencing (I), and

moving average (MA) components to model and predict complex time-dependent data. It is

particularly useful for data that exhibit trends or seasonality, making it a fundamental tool in

fields such as economics, finance, weather forecasting, and demand forecasting.

Structure of ARIMA (p, d, q):

ARIMA is represented as ARIMA (p, d, q), where:

p (Autoregressive order) — Specifies the number of past values used to predict future
values. The AR component assumes that past observations influence the current value

through a linear relationship.

d (Degree of differencing) — Represents the number of times the data needs to be
differenced to make the time series stationary. Differencing helps remove trends and
stabilize the mean, ensuring that the statistical properties of the series do not change

over time.

q (Moving average order) — Defines how many past forecast errors are used to correct
future predictions. The MA component captures the impact of random shocks or noise

in the data.

Key Features and Assumptions of ARIMA:

1.

2.

Stationarity — ARIMA assumes that the input data is stationary, meaning its mean,
variance, and autocorrelation remain constant over time. If a dataset is non-stationary,

it must be transformed through differencing or other techniques.

Univariate Data — ARIMA 1is designed for single-variable (univariate) time series
forecasting, meaning it works best when analyzing a single dependent variable over

time without external influences.

Past Dependency — The model assumes that future values depend on past values (AR

component) and past forecast errors (MA component).
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4. No Seasonality — ARIMA does not inherently account for seasonal patterns; however,
an extended version called SARIMA (Seasonal ARIMA) is used for datasets with

seasonal variations.
Model Selection and Evaluation:
The optimal values of p, d, and q are determined using statistical tools such as:

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) to

identify p and q.
Augmented Dickey-Fuller (ADF) Test to check for stationarity.

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to

compare different ARIMA models and select the best fit.

Due to its ability to model linear relationships in time series data, ARIMA remains one of the
most powerful forecasting techniques. However, for complex datasets with multiple
influencing variables, advanced models like SARIMA, VAR (Vector Autoregression), and

machine learning-based time series models may be more effective.

3.4.5 Auto Correlation Function

The Autocorrelation Function (ACF) is a fundamental statistical tool used in time series
analysis to measure the correlation between a time series and its lagged values at different time
points. It helps in understanding how past observations influence current values, making it a
crucial component in forecasting models such as Autoregressive (AR), Moving Average (MA),

ARMA, and ARIMA models.
Definition and Importance of ACF:

Autocorrelation refers to the degree of similarity between a given time series and a lagged
version of itself over successive time intervals. The ACF function calculates the correlation
coefficient between a time series and its past values at different lags. If the autocorrelation is
high at a particular lag, it indicates that past values strongly influence future values, which is

useful for trend analysis, pattern recognition, and forecasting.

Mathematically, the autocorrelation at lag k is given by:
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YN X=X~ (X k= X)
SN (x-%)°

ACF(k) =

where:
X, represents the time series values at time t.
X is the mean of the series.
k is the time lag.
N is the total number of observations.
Uses of ACF in Time Series Analysis:
1. Determining the Order of Moving Average (MA) Models:

ACEF is particularly useful in identifying the appropriate order (q) of an MA(q)
model in ARIMA modeling. A significant autocorrelation at a certain lag

indicates that past forecast errors at that lag influence current values.
2. Detecting Seasonality and Cyclical Patterns:

If the ACF shows periodic spikes at regular intervals, it suggests a seasonal or
cyclical pattern in the time series. This is essential in selecting SARIMA

(Seasonal ARIMA) models for forecasting seasonal data.
3. Checking for Stationarity:

A slowly declining or high autocorrelation at higher lags suggests that the time
series may be non-stationary. In such cases, differencing the data can help

remove trends and stabilize variance.
4. Evaluating Forecast Accuracy:

ACEF is used to analyze the residuals of a forecasting model to check whether
they exhibit any pattern. If residuals still show significant autocorrelation, it

indicates that the model may need improvement.
Interpreting the ACF Plot:

An ACF plot is a graphical representation of the correlation coefficients at various lags. The

interpretation is as follows:
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If the ACF decreases gradually with increasing lags, it suggests a strong trend

component in the data.
If the ACF has significant spikes at regular intervals, it indicates seasonality.

If the ACF drops sharply to near zero after a few lags, it suggests that an MA(q) model
may be appropriate for the data.

3.4.6 Partial Auto Correlation Function

The Partial Autocorrelation Function (PACF) is a key statistical tool in time series analysis that
measures the direct correlation between a time series and its lagged values while removing the
effects of intermediate lags. Unlike the Autocorrelation Function (ACF), which considers the
cumulative influence of all previous observations, PACF isolates the pure relationship between

a time series and a specific lag, making it an essential tool for model selection in forecasting.
Definition and Importance of PACF

PACF helps in identifying the true relationship between past observations and the present value
of a time series by eliminating indirect influences. This is particularly useful in selecting the

appropriate order (p) of an Autoregressive (AR) model in ARIMA modeling.

Mathematically, the PACF at lag k represents the correlation between X, and X,_j after
removing the contributions of all intermediate lags (X;_1,X¢—2,......X¢—k+1)- It is computed
using regression techniques where each lagged value is regressed on all previous lags, and the

residual correlation is taken as the partial autocorrelation.
Uses of PACF in Time Series Analysis
1. Determining the Order of Autoregressive (AR) Models

PACEF is primarily used to identify the order (p) of an AR(p) model in ARIMA
modeling. If the PACF shows significant correlation at a particular lag p but

drops to near zero afterward, it indicates that the data follows an AR(p) process.
2. Distinguishing Between AR and MA Processes

If the ACF gradually declines while PACF cuts off sharply after a few lags, it

suggests an AR process.
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If the PACF declines gradually while ACF cuts off after a few lags, it suggests
a Moving Average (MA) process.

3. Identifying Stationarity in a Time Series

A slowly decaying PACF at increasing lags may indicate a non-stationary time
series. Differencing the data can help transform it into a stationary series before

applying ARIMA modeling.
4. Selecting the Correct Forecasting Model

PACEF is crucial in determining whether a time series follows an ARIMA (p, d,

q) or MA(q) model, ensuring accurate forecasting.
Interpreting the PACF Plot
A PACEF plot is a graphical representation where:

Significant spikes at a particular lag p followed by a sharp decline suggest an AR(p)

process.
A gradual decline in PACF but a sharp cutoff in ACF suggests an MA(q) process.

Significant spikes at multiple lags suggest seasonality or a mix of AR and MA

processes.

3.4.7 Augmented Dickey-Fuller test

The Augmented Dickey-Fuller (ADF) test is a widely used statistical test in time series analysis
to determine whether a given time series is stationary or non-stationary. Stationarity is a key
assumption in many forecasting models, including ARIMA, as non-stationary data can produce
unreliable predictions and misleading results. The ADF test is an extension of the Dickey-Fuller
test, incorporating lagged differences of the time series to account for autocorrelation, making

1t more robust for real-world data.
Concept of Stationarity and Unit Root

A time series is stationary if its statistical properties, such as mean, variance, and
autocorrelation, remain constant over time. Conversely, a non-stationary series exhibits trends,

seasonality, or changing variance. The ADF test checks for the presence of a unit root, a
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characteristic of non-stationary time series, to determine whether differencing is required

before applying forecasting models.
Hypotheses of the ADF Test
Null Hypothesis (Ho): The series is non-stationary (has a unit root)

If the null hypothesis is not rejected, the data exhibits trends, and differencing

is required to make it stationary.
Alternative Hypothesis (Hi): The series is stationary (no unit root)

If the null hypothesis is rejected, the data is already stationary, meaning its

statistical properties remain stable over time.
ADF Test Formula
The ADF test is based on the regression equation:
AY,=a+pt+yY, 1 +X6AY ; + e

Where:

Y, is the time series at time t

AY, =Y, - Y,_represents the first difference of the series

o is a constant (intercept)

Bt represents a trend component (optional)

yY;_, tests whether the series has a unit root

6; are the coefficients of the lagged differences

€; 1s white noise (random error)
Interpreting ADF Test Results

The test produces a test statistic, which is compared against critical values at significance levels

(1%, 5%, and 10%):

If the test statistic is less than the critical value, the null hypothesis is rejected, indicating

stationarity.
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If the test statistic is greater than the critical value, the null hypothesis is not rejected,

meaning the series is non-stationary and needs differencing.

3.4.8 Seasonal data

A time series is considered seasonal when it exhibits repeating patterns at regular intervals due
to factors like weather, holidays, or business cycles. These variations occur daily, monthly, or

annually and help in understanding trends for accurate forecasting.

For example, retail sales peak during festive seasons, tourism rises in summer, and electricity
consumption fluctuates with seasons. Identifying seasonality aids in business planning,

inventory management, and financial forecasting.

Statistical methods like STL decomposition and forecasting models such as SARIMA and Holt-
Winters help analyze and predict seasonal effects, ensuring better decision-making in time

series forecasting.

3.4.9 Akaike Information Criterion (AIC)

The Akaike Information Criterion (AIC) is a widely used statistical measure in model selection,
particularly in time series analysis and machine learning, to determine the best-fitting model
among a set of competing models. It evaluates models based on their goodness of fit while also
penalizing excessive complexity to prevent overfitting. The AIC is designed to strike a balance
between model accuracy and simplicity, ensuring that the chosen model is both effective and

generalizable to new data.

AIC can be calculated using the following formula:
AIC=-2*In(L)+2 *k

Where:

L is the maximized value of the likelihood function of the model.

k is the number of parameters in the model.
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A lower AIC value indicates a better model, meaning it achieves a good fit with fewer
parameters. When comparing multiple models, the one with the smallest AIC is preferred.
However, AIC values are relative, meaning they are only useful when comparing models fitted

to the same dataset.

AIC is widely applied in autoregressive models (AR), moving average models (MA), ARIMA
models, and regression analysis to identify the most efficient model for forecasting. It helps
researchers and analysts make data-driven decisions by selecting models that provide accurate
predictions without unnecessary complexity. However, AIC does not directly assess model
accuracy but rather provides a trade-off between fit and complexity, making it a crucial tool in

model evaluation and selection.

3.4.10 Model Fitting

Model fitting is the process of estimating a model's parameters to ensure that it accurately
represents the underlying patterns and relationships in a given dataset. The primary goal of
model fitting is to identify a model that provides the best balance between accuracy and
generalization, meaning it should perform well not only on the training data but also on unseen
data. A well-fitted model captures the essential trends and patterns in the data without

overfitting (capturing noise) or underfitting (failing to capture important details).

Model fitting involves several steps, including selecting an appropriate model type, estimating
its parameters, and evaluating its performance using statistical measures such as mean squared
error (MSE), root mean squared error (RMSE), R-squared (R?), and information criteria like
AIC or BIC. Techniques like maximum likelihood estimation (MLE), least squares regression,

and gradient descent are commonly used to optimize model parameters.

In time series analysis, model fitting plays a crucial role in forecasting, where models like
ARIMA, Exponential Smoothing, and Holt-Winters are trained to capture temporal patterns.
In machine learning, fitting refers to training algorithms like linear regression, decision trees,
and neural networks to minimize error and improve predictive performance. Proper model
fitting ensures that the selected model is both accurate and efficient, making it a critical step in

statistical analysis, forecasting, and predictive modeling.
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3.4.11 Forecasting

Forecasting is the process of estimating future trends, values, or events based on historical data,
statistical techniques, and mathematical models. It plays a crucial role in decision-making
across various domains, including finance, economics, business, weather prediction, and
supply chain management. Forecasting helps organizations anticipate market demand, resource
allocation, revenue projections, and risk assessment, enabling them to plan effectively and

make data-driven decisions.

In time series forecasting, past observations are analyzed to predict future values. This
approach includes methods like moving averages, exponential smoothing, and ARIMA models,
which identify patterns such as trends, seasonality, and cyclic behavior. Qualitative forecasting
relies on expert judgment, market research, and scenario analysis, making it useful in cases
where historical data is limited or unreliable, such as new product launches or geopolitical
events. Quantitative forecasting, on the other hand, uses statistical models, regression analysis,

and machine learning algorithms to generate precise and data-driven predictions.

Forecasting can be classified based on the time horizon: short-term forecasting (days to
months) is used for inventory management, staffing, and daily operations, while long-term
forecasting (years to decades) aids in strategic planning, investment decisions, and economic
policy formulation. Effective forecasting improves efficiency, reduces uncertainty, and
enhances business competitiveness, making it an essential tool in analytics and predictive

modelling.

3.4.12 Residual analysis

Residual analysis is a crucial step in model validation, used to evaluate how well a model
captures patterns in data by examining the residuals—the differences between actual observed
values and model-predicted values. It helps assess model accuracy, reliability, and assumptions,
ensuring that predictions are unbiased and errors follow expected statistical properties.
Residual analysis is widely applied in regression analysis, time series forecasting, and machine

learning to diagnose model performance and identify potential improvements.

A well-fitted model should have residuals that are randomly distributed with zero mean and
constant variance (homoscedasticity). If residuals show non-random patterns, such as

systematic trends, increasing or decreasing variance, or autocorrelation, it may indicate model
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deficiencies like underfitting (failing to capture essential patterns), overfitting (too closely
modeling noise), or incorrect assumptions (such as non-linearity or omitted variables).
Statistical tests like the Durbin-Watson test (for autocorrelation), Breusch-Pagan test (for
heteroscedasticity), and normality checks (e.g., Q-Q plots, Shapiro-Wilk test) are commonly

used to assess residual behavior.

By analyzing residuals, data scientists and analysts can refine models, select better features,
and ensure that the assumptions underlying statistical models hold true. Effective residual
analysis enhances forecasting accuracy, improves decision-making, and increases confidence
in predictive modeling outcomes across various fields, including finance, economics,

healthcare, and engineering.

3.4.13 Model evaluation

Model accuracy is assessed using various error metrics to evaluate how well a model's
predictions align with actual values. Two widely used metrics in regression and time series

forecasting are Mean Squared Error (MSE) and Root Mean Squared Error (RMSE).

MSE calculates the average squared difference between predicted and observed values,

emphasizing larger errors due to squaring. It is given by:

1 2
MSE ==-311(vi = )

where y; represents actual values, ¥, represents predicted values, and nn is the number of

observations. A lower MSE indicates a better model fit.

RMSE is derived by taking the square root of MSE, making it easier to interpret since

it is in the same units as the original data:

RMSE =vVMSE

RMSE provides an intuitive measure of prediction error, with lower values indicating higher

model accuracy.

Both MSE and RMSE are essential for comparing models, fine-tuning parameters, and
ensuring reliable forecasting in various fields like finance, healthcare, and engineering.

However, since they are sensitive to large errors, they are often complemented by other metrics
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like Mean Absolute Error (MAE) or Mean Absolute Percentage Error (MAPE) for a

comprehensive evaluation.

3.5 REGRESSION

Regression analysis is a powerful statistical technique used to model relationships between a

dependent variable (response variable) and one or more independent variables (predictors or

regressors). It helps identify the strength, direction, and significance of these relationships,

making it a fundamental tool in forecasting, trend analysis, and decision-making across various

fields like finance, economics, healthcare, and social sciences.

3.5.1 Linear Regression Model

Steps for Determining the Trend Line Using Linear Regression

1.

Define Variables: Identify the independent variable (Year) and the dependent variable

(Delinquency Rate) to detect trends over time.

Collect Data: Gather historical data covering multiple years to ensure accurate trend

detection.

Preprocess Data: Check for missing values or inconsistencies and clean the dataset to

ensure reliability.

Apply Linear Regression: Fit a Simple Linear Regression model to the data using the
equation: Y= fy+ ;1 *X + ¢, where Y is the delinquency rate, X is the year, Po is the

intercept, P1 is the slope, and ¢ is the error term.

Interpret the Trend Line: Analyze the slope (1) to determine whether the delinquency
rate is increasing, decreasing, or stable over time. A positive slope indicates an upward

trend, while a negative slope suggests a downward trend.
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3.6 SMOOTHING

In terms of Data analytics and Statistics smoothing refers to technique in which we can reduce
the variability in data. By adopting smoothing techniques we can create a smooth
representation of data. In this method, we usually calculate the average of nearby data points
or use some mathematical model to the data trend. Smoothing methods are generally applied
to those data sets which we are unable or difficult to find trend and patterns which may affect
our prediction. These methods of smoothing are used in signal processing, time series analysis,

machine learning etc

3.6.1 Exponential Smoothing

Exponential Smoothing is a widely used method in time series analysis for smoothing data and
forecasting future values. It is particularly effective for datasets that exhibit trends or
seasonality, making it applicable to real-world problems where such patterns are common. The
method assigns exponentially decreasing weights to past observations, giving more importance

to recent data points.

Steps in Exponential Smoothing Model

1. Initialize the Level Estimate: Choose an initial value for the level, which can be the first
observation in the dataset or determined using statistical measures like the mean or

mode.

2. Apply the Smoothing Equation: For each observation, compute the smoothed value

using the formula:
S¢= oYyt (1-a) ey
Where:
St = Smoothed value at time t
Y, = Actual observation at time t
S¢_1 = Smoothed value of the previous time period

o = Smoothing constant, controlling the level of smoothing

Department of Mathematics and Statistics, St. Teresa’s College (Autonomous), Ernakulam 23




A STATISTICAL STUDY ON JUVENILE DELINQUENCY IN INDIA

Update the Level Estimate: The newly computed smoothed value

becomes the level estimate for the next observation.

3. Repeat the Process for All Observations: Continue applying the smoothing equation for

all observations until the last data point is reached.

4. Forecast Future Values: Use the last smoothed value to estimate future data points based

on the exponential smoothing formula.
5. Evaluate Forecast Accuracy: Compute error metrics such as:
Mean Absolute Error (MAE)
Mean Squared Error (MSE)

Root Mean Squared Error (RMSE)

3.6.2 Holt-Winters Forecasting

Holt-Winters Exponential Smoothing is an extension of exponential smoothing that accounts
for both trends and seasonality. It is commonly used for forecasting time series data where

patterns repeat over fixed periods.

Steps in Holt-Winters Model

1. Initialize Components: Set initial values for the level (L), trend (T), and seasonal (S)

components based on historical data.

2. Update Level, Trend, and Seasonality: Compute the smoothed values using the

following equations:
Level:
L= asfm +(1-0) (Lg-11Te-1)
Trend:
Tt =P(Le= Le—q) + (1-P)Te—4
Seasonality:

Y;
St= YL_tt +(179)St-m
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Where:
L; = Level component at time t
T; = Trend component at time t
St = Seasonal component at time t
m = Length of the seasonal cycle

a, B, v = Smoothing constants controlling how much weight is given to

recent data

3. Repeat for All Observations: Update L, T, and S for each time step using the above

formulas.

4. Forecast Future Values: Use the last computed values of L, T, and S to forecast future

data points using: Y;, = (L¢+hT})S¢sn—m,Where h is the forecasting horizon.

5. Evaluate Forecast Accuracy: Measure performance using MAE, MSE, and RMSE to

assess the accuracy of the forecast.

3.7 TOOLS USED FOR COMPARISON

The present study uses Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) for

comparison of models.

Mean Squared Error (MSE) is the average value of squared difference between actual and

predicted values.
Root Mean Squared Error (RMSE) is the square root of Mean Squared Error (MSE).

Both Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) can be used to

compare the difference model performance on certain data.
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Chapter 4
RESULTS AND ANALYSIS

4.1 DATA DESCRIPTION

For the purpose of the study, the data was collected from the National Crime Records Bureau
official website (https://ncrb.gov.in). The data consists of yearly records from 1970 to 2022.
This dataset provides a comprehensive overview of juvenile delinquency rates across the
specified years. For analysis, the data has been organized into a structured format to facilitate
insights and comparisons over the study period.

4.2 ARIMA MODELLING

To analyze and predict juvenile delinquency trends in India, the ARIMA model was used to
forecast delinquency rates for the years 2023 to 2027. ARIMA is a powerful tool for time series
analysis, as it accounts for non-seasonal patterns by utilizing historical trends and assumes the
data is stationary and univariate.

4.2.1 Time series plot

Figure 4.1 is the time series plot of the juvenile delinquency rates data from 1970 to 2022.

Delinquency Rates Over Years
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Figure 4.1 Time series plot of the juvenile delinquency rates
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4.2.2 Decomposition of time

The second step perform seasonal decomposition to capture the trend, seasonal and random
components of time series. Figure 4.2 depict the seasonal plot.
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Figure 4.2 Seasonal decomposition plot

4.2.3 Stationarity check using Augmented Dickey- Fuller Test

To test the time series data for stationarity using ADF test, follows a hypothesis testing
approach. The null hypothesis HO is given by,

HO: The data is non stationary.
The alternative hypothesis H1 is given by,

H1: The data is stationary.

The outcome achieved, ADF test statistic = -2.4675596535198423, Lag order = 6, p-value =
0.12356821958177372

The ADF test gives the p-value 0.12356821958177372, which is greater than 0.05, so accept
the null hypothesis i.e.; the data is non stationary, hence we perform n order differencing until
we get time series stationary We perform differencing with n = 1 Now we again check
stationarity using ADF test.

Here we test the hypothesis,
HO: The data is non-stationary.
Against

H1: The data is stationary.

ADF test statistic =-5.351559, Lag order = 6, p-value= 0.000004 The ADF test gives the p-
value0.000004, which is smaller than 0.05, so reject the null hypothesis HO and Hence, we can
conclude that data is stationary; Figure 4.3 shows the differenced delinquency rates.
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Differenced Delinquency Rates Over Years
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Figure 4.3 Plot of differenced delinquency rates

4.2.4 Autocorrelation and Partial Autocorrelation Function

Next step in Time Series Analysis is to plot and examine Autocorrelation Function (ACF) and
Partial Autocorrelation Function (PACF). ACF &PACEF Plot is given in Figure 4.4.
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Figure 4.4 Autocorrelation Function & Partial Autocorrelation Function Plot

4.2.5 ARIMA Model for delinquency rates
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In this step we choose the best model for forecasting the values. It is done by choosing one
model from all possible models according to Akaike Information Criterion (AIC). The model
with lowest AIC value is chosen as the best model. Below Table 4.1 shows the possible models
with their AIC values.

Table 4.1 The model with AIC value

SL NO. MODEL ARIMA AIC
(p’ d’ q) X (P’ D’ Q)
1 ARIMA (0, 1, 0) x (0, 0, 0) 1004.0658
2 ARIMA (0, 1, 1) x (0, 0, 0) 981.8864
3 ARIMA (0, 1, 2) x (0, 0, 0) 964.6589
4 ARIMA (0, 1, 3) x (0, 0, 0) 946.6425
5 ARIMA (0, 1, 4) x (0, 0, 0) 928.1296
6 ARIMA (0, 1, 5) x (0, 0, 0) 907.7286
7 ARIMA (1, 1, 0) x (0, 0, 0) 1002.4053
8 ARIMA (1, 1, 1) x (0, 0, 0) 983.8744
9 ARIMA (1, 1, 2) x (0, 0, 0) 966.5088
10 ARIMA (1, 1, 3) x (0, 0, 0) 948.5292
11 ARIMA (1, 1, 3) x (0, 0, 0) 927.9114
12 ARIMA (1, 1, 5) x (0, 0, 0) 908.7660
13 ARIMA (2, 1, 0) x (0, 0, 0) 983.0972
14 ARIMA (2, 1, 1) x (0, 0, 0) 985.1166
15 ARIMA (2, 1, 2) x (0, 0, 0) 967.2678
16 ARIMA (2, 1, 3) x (0, 0, 0) 944.6161
17 ARIMA (2, 1, 4) x (0, 0, 0) 925.0720
18 ARIMA (2, 1, 5) x (0, 0, 0) 907.4081
19 ARIMA (3, 1, 0) x (0, 0, 0) 965.8004
20 ARIMA (3, 1, 1) x (0, 0, 0) 965.8859
21 ARIMA (3, 1, 2) x (0, 0, 0) 965.4729
22 ARIMA (3, 1, 3) x (0, 0, 0) 939.9363
23 ARIMA (3, 1, 4) x (0, 0, 0) 919.5848
24 ARIMA (3, 1, 5) x (0, 0, 0) 909.4331
25 ARIMA (4, 1, 0) x (0, 0, 0) 946.4052
26 ARIMA (4, 1, 1) x (0, 0, 0) 947.9586
27 ARIMA (4, 1, 2) x (0, 0, 0) 944.5428
28 ARIMA (4, 1, 3) x (0, 0, 0) 940.6651
29 ARIMA (4, 1, 4) x (0, 0, 0) 921.2991
30 ARIMA (4, 1, 5) x (0, 0, 0) 905.3694
31 ARIMA (5, 1, 0) x (0, 0, 0) 928.7157
32 ARIMA (5, 1, 1) x (0, 0, 0) 930.3933
33 ARIMA (5, 1, 2) x (0, 0, 0) 926.9935
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34 ARIMA (5, 1, 3) x (0, 0, 0) 923.2703
35 ARIMA (5, 1, 4) x (0, 0, 0) 924.5933
36 ARIMA (5, 1, 5) x (0, 0, 0) 907.3538

Here the best model is ARIMA (4, 1, 5) x (0, 0, 0) with AIC value 905.3694

Coefficients:

ar.L1 ar.L.2 ar.L.3 ar.L4 ma.L1 ma.L2 ma.L3 ma.lL4 | ma.LL5

0.8331 | -0.8835 | 0.6520 | -0.2426 | -1.1904 | 0.9380 | -0.6797 | 0.7338 | 0.6324

std | 0.206 | 0.272 | 0.266 | 0.162 0.301 0.481 0.424 0.444 | 0.432
err

4.2.6 Diagnostic checking

Diagnostics checking is performed for confirming the validity, effectiveness and reliability of
statistical models. The main objective of it is to choose the right and best model. Below figure
4.5 shows the diagnostic plot.
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Figure 4.5 Diagnostic plot

From Q-Q plot, it is clear that most of the residuals are on the same line and standard residual
are normally fitted
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4.2.7 Forecasting the Sample

Forecasting the future and predicting the actual data points or the training data points. Here
evaluate model performance on training data. Figure 4.6 is the plot of actual and predicted

values.
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Figure 4.6 Plot of actual and predicted values

4.2.8 Forecasting the Future Values

The forecasted juvenile delinquency rates data from 2023 to 2027 is given in Table 4.2.

Table 4.2 Forecasted juvenile delinquency rates

Year Forecasted LCL UCL
Values

2023 40089.361223 20439.884961 37532.837485

2024 41617.647742 15617.635356 42817.660129

2025 43119.399848 11747.873881 46290.925816

2026 44491.022597 8265.235837 47716.809356

2027 46065.160297 6084.528473 49685.792120

The Figure 4.7 shown below is the graph of forecasted juvenile delinquency rates data from

2023 to 2027.
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Forecasted Values with 95% Confidence Intervals
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Figure 4.7 forecasted juvenile delinquency rates plot

4.3 REGRESSION ANALYSIS MODEL

Linear Regression was applied to analyze the trend line, as it effectively studies the relationship
between variables under the assumption that the dependent variable changes proportionally
with the independent variable.

4.3.1 LINEAR REGRESSION MODEL

Figure 4.8 is the plot of actual Juvenile Delinquency Rate Over Years and Figure 4.9 is the
plot of linear trend line of Delinquency Rate
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Juvenile Delinquency Rate Over Years
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Figure 4.8 plot of actual Juvenile Delinquency Rate Over Years using linear regression

Regression Analysis on Juvenile Delinquency Rate
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Figure 4.9 Plot of linear trend line of Delinquency Rate
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4.4 EXPONENTIAL SMOOTHING MODEL

In this study, the smoothing parameter (alpha) is a key constant chosen based on the
characteristics of the data. A smaller alpha value results in greater smoothing, reducing noise
and fluctuations, while a larger value makes the model more responsive to recent changes. To
effectively capture trends and patterns in juvenile delinquency rates, an alpha value of 0.1 was
selected. This choice ensures a balanced smoothing effect, helping to remove short-term
variations while preserving the overall trend, making it suitable for forecasting and trend
analysis using Exponential Smoothing and Holt-Winters Forecasting.

4.4.1 Forecasting future values

Using Python and the equations for Single Exponential Smoothing and Holt-Winters
Forecasting, we forecasted the juvenile delinquency rate for the years 2023 to 2032. The table
4.3 shown below presents the forecasted values obtained through these methods, providing
insights into future trends in juvenile delinquency based on historical patterns.

Table 4.3 Forecasted juvenile delinquency rates using Holt-Winters Forecasting

Year Holt Winters Forecast
2023 30712.529571
2024 30865.623619
2025 31018.717667
2026 31171.811716
2027 31324.905764
2028 31477.999812
2029 31631.093860
2030 31784.187908
2031 31937.281956
2032 32090.376004

4.4.2 Forecasting the Sample

Forecasting the future involves predicting the actual data points based on historical trends. In
this study, model performance is evaluated using the training data. Figure 4.10 presents the plot
of actual versus predicted values, showcasing how well the model fits the historical data.
Additionally, displays the forecasted juvenile delinquency rates from 2023 to 2032, using the
Holt-Winters Forecasting Model to capture both trend and seasonal variations for better
accuracy.
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Figure 4.10 plot of actual versus predicted values and forecasted juvenile delinquency rates

4.5 COMPARISON OF RMSE AND MSE VALUES

To determine the best model between ARIMA and the Holt-Winters Forecasting Model, a
comparison of their RMSE values is conducted. Mean Squared Error (MSE) represents the
average squared difference between actual and predicted values, while Root Mean Squared
Error (RMSE) is the square root of MSE, providing a more interpretable measure of error. The
comparison of RMSE values for the ARIMA model and Holt-Winters Forecasting Model is
presented in Table 4.4, highlighting their forecasting accuracy.

Table 4.4 The comparison of RMSE values for the ARIMA model and Holt-Winters
Forecasting Model

ARIMA model Exponential smoothing
model

RMSE 6093.8429 5443.08

From Table 4.4, it is evident that the Holt-Winters Forecasting Model has a smaller RMSE
value compared to the ARIMA model. Based on the RMSE values, it can be concluded that the
Holt-Winters Forecasting Model performs better than the ARIMA model and can be considered
the best model for this study in terms of forecasting accuracy.

To enhance prediction accuracy, Exponential Smoothing and Holt-Winters Forecasting were
also implemented. Exponential Smoothing is a widely used forecasting technique that assigns
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exponentially decreasing weights to past observations, making it useful for smoothing data and
predicting future trends. The Holt-Winters Model, an extension of Exponential Smoothing, was
applied to capture both trend and seasonal components in the data, improving forecasting
precision.

Lastly, a comparative analysis was conducted between ARIMA and Holt-Winters Forecasting
to evaluate their predictive performance. By assessing different forecasting techniques, this
study ensures a comprehensive understanding of juvenile delinquency trends in India, allowing
for more informed policy decisions.
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Chapter 5
CONCLUSION

This study aimed to analyze and forecast juvenile delinquency trends in India using historical
data from 1970 to 2022. Through the application of various time series forecasting
methodologies, including ARIMA, Linear Regression, Exponential Smoothing, and Holt-
Winters Forecasting, a comprehensive understanding of the patterns and trends in juvenile
delinquency rates was developed.

The analysis began with data visualization and pre-processing steps, including stationarity
checks and decomposition of time series components to identify trends and seasonality. The
Augmented Dickey-Fuller (ADF) test was employed to assess the stationarity of the data. The
initial test confirmed the presence of non-stationarity, leading to first-order differencing to
achieve stationarity, which was essential for further time series modeling.

The ARIMA model was extensively tested by evaluating various parameter combinations to
select the best-fitting model based on the Akaike Information Criterion (AIC). The best-
performing ARIMA model was identified as ARIMA (4,1,5) with an AIC value of 905.3694.
Diagnostic checks, including residual analysis, were conducted to validate the model's
reliability. The ARIMA model was then used to forecast juvenile delinquency rates for the
period 2023 to 2027.

Additionally, a Linear Regression model was employed to analyze long-term trends in
delinquency rates. The linear trend analysis provided valuable insights into the overall direction
of juvenile delinquency rates over time but lacked the capability to capture non-linearity and
seasonal variations in the data.

To further enhance forecasting accuracy, Exponential Smoothing and the Holt-Winters
Forecasting Model were applied. The Exponential Smoothing model effectively reduced short-
term fluctuations by assigning exponentially decreasing weights to past observations, ensuring
a smoother trend representation. The Holt-Winters method extended this approach by
incorporating trend and seasonal components, leading to more precise long-term forecasts. The
forecasted juvenile delinquency rates using the Holt-Winters method covered the period from
2023 to 2032, offering an extended predictive outlook.

A comparative analysis was conducted between the ARIMA model and the Holt-Winters
Forecasting Model using Root Mean Squared Error (RMSE) as a performance metric. The
RMSE values for both models indicated that the Holt-Winters Forecasting Model (RMSE =
5443.08) outperformed the ARIMA model (RMSE = 6093.8429) in terms of predictive
accuracy. The lower RMSE value of the Holt-Winters model signifies its superior ability to
capture underlying patterns in juvenile delinquency trends.

Key Findings:

1. The juvenile delinquency rate data exhibited non-stationarity, which was addressed
through differencing techniques.
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2. The ARIMA model was effective in short-term forecasting, with the ARIMA(4,1,5)
model identified as the best fit.

3. Linear regression provided insights into the overall trend but was limited in
capturing complex variations in delinquency rates.

4. The Holt-Winters Forecasting Model effectively captured both trend and seasonal
variations, resulting in more accurate long-term forecasts.

5. The comparative RMSE analysis confirmed that the Holt-Winters model
outperformed the ARIMA model, making it the preferred choice for forecasting
juvenile delinquency rates.

Implications and Future Scope: The findings of this study have significant implications for
policymakers, law enforcement agencies, and social organizations aiming to mitigate juvenile
delinquency. The use of advanced forecasting techniques can aid in formulating effective
intervention strategies by predicting future delinquency trends and enabling proactive
measures.

Future research could focus on incorporating additional socio-economic variables, such as
education levels, unemployment rates, and family structures, to improve the predictive
capabilities of the models. Additionally, machine learning techniques like Long Short-Term
Memory (LSTM) networks and hybrid models could be explored for further enhancements in
forecasting accuracy.

Overall, this study provides a robust framework for understanding and predicting juvenile
delinquency trends in India, contributing valuable insights for effective policy formulation and
crime prevention strategies.
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