
Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner





Scanned by CamScanner



Scanned by CamScanner



A STATISTICAL STUDY ON JUVENILE DELINQUENCY IN INDIA 
 

Department of Mathematics and Statistics, St. Teresa’s College (Autonomous), Ernakulam  1 

Chapter 1 

           INTRODUCTION 

Constantly shown that poverty, ignorance, and unstable family surroundings contribute 

significantly to juvenile delinquency. Children from economically weaker sections are more 

vulnerable to engaging in unlawful conditioning due to lack of education, employment 

openings, and social support systems (Acharya, S, 2017). Rajasthan has a high academy 

powerhouse rate, leading to increased exposure to negative influences and lower openings for 

legal employment, which can push kids toward crime (Atrey. I & Singh. B, 2023). The analysis 

of statistical data available at functionary spots indicates that there's an increase of youth 

involvement in heinous crimes (Dhaka, s. K., 2021). The study involves the data collection, 

preprocessing, exploratory data analysis, model development and evaluation criteria (Jain, H., 

& Patel, R., 2024). t is revealed from the study that, no particular reason is responsible for kids’ 

delinquency- a variety of reasons are responsible for this (Haveripet, P., 2013). The Indian 

Legislature and Judiciary have shown perceptivity and responsiveness in securing the rights of 

the kids. The “Juvenile Justice Act, 2015” was legislated to insure that the law related to kids 

keep pace with the changing times (Khan, S., 2022). A responsible society it's a duty to keep 

an eye on this particular age group people, so that they could be corrected at the right time if 

set up shamefaced at any point during this period (Hazarika, J., & Goswami, D, 2020). The 

origins of felonious behaviour in youth are a complex matter; delinquency is often predictable 

early in some children's lives (Sharma, B. R., Dhillon, S., & Bano, S., 2009)  

Juvenile delinquency is a growing concern in India, affecting not only the individuals involved 

but also society at large. It refers to illegal or antisocial behaviour committed by individuals 

under the age of 18. Understanding the trends and patterns of juvenile delinquency is pivotal 

for developing effective programs and preventative measures to check youth crime. The 

juvenile delinquency rate is told by colourful socio profitable factors similar as poverty, 

education, family background, peer influence, and government programs. Analysing the literal 

trends in juvenile crime can give precious perceptivity into the effectiveness of being laws, 

recuperation programs, and socio- profitable development sweats aimed at reducing youth 

offenses. This study focuses on examining and vaticinating juvenile delinquency trends in India 

from 1970 to 2022 using statistical styles.  

The dataset consists of two crucial variables   
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1. Time (1970- 2022) – Representing the timeline of recorded delinquency data.  

2. Juvenile Delinquency Rate – The number of offenses committed by kids per time.  

The exploration will employ time series analysis ways, including Exponential Smoothing, 

Holt- Winters Method, ARIMA, and Machine literacy models to assay once trends and 

prognosticate unborn delinquency rates. These soothsaying models will help policymakers and 

law enforcement agencies anticipate implicit unborn trends and make data- driven opinions to 

address juvenile crime effectively. By conducting this statistical study, we aim to give a 

comprehensive understanding of the patterns and oscillations in juvenile delinquency in India, 

which can contribute to the development of better crime forestallment strategies, recuperation 

programs, and social programs to cover and guide the youth towards a positive future. 

1.1 Objectives of the Study 

1. To forecast future juvenile delinquency rates using ARIMA model. 

2. To analysis trends line in juvenile delinquency rates over Linear Regression. 

3. To model & forecast the future values of rice price for Ernakulam District using 

Exponential smoothing. 

4. To compare the forecast by ARIMA and Exponential smoothing to find best model 
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Chapter 2 

REVIEW OF LITERATURE 

1. Sharma (2009) proposed that Juvenile delinquency is a global issue, intensified in 

developing countries by rapid socio-economic shifts. Urbanization, 

industrialization, and migration weaken traditional controls, increasing youth 

crime. Research links adverse childhood experiences to delinquency, stressing early 

intervention. Despite extensive studies, gaps remain in India’s long-term trends, 

with most focusing on short-term analyses. This study fills that gap by analyzing 

juvenile delinquency from 1970 to 2022 using statistical methods. Unlike prior 

qualitative studies, it employs a quantitative time-series approach, integrating 

historical, socio-economic, and policy factors for objective, data-driven insights. 

2.  Agyemang (2012) proposed that Community policing is an effective crime 

prevention strategy, enhancing police-community collaboration and reducing 

crime. However, its impact varies based on implementation and socio-economic 

factors. Existing studies often rely on qualitative or short-term analyses, lacking 

empirical validation of long-term effects. This study fills that gap using ARIMA 

intervention analysis to assess Ghana’s Community Policing Unit (2000–2011). 

Findings show a statistically significant yet temporary crime reduction of 16 cases 

per month, with a long-term decrease of 16.23 cases. Unlike prior qualitative 

research, this study employs a quantitative time-series approach, ensuring objective, 

data-driven insights while avoiding redundancy. 

3. Haveripet (2013) proposed that Juvenile delinquency is a global issue, with 10.2 

offenders per 100,000 population worldwide and 0.9–1% of total crimes in India. 

Key causes include family conflict, socio-economic conditions, lack of supervision, 

media influence, and child abuse, which lower self-esteem and increase criminal 

tendencies. Despite research, gaps remain in understanding long-term trends and 

socio-economic influences on juvenile delinquency in India. Most studies focus on 

specific causes rather than comprehensive statistical analysis or the impact of 

rehabilitation efforts. This study fills these gaps by analyzing juvenile delinquency 

trends in India (1970–2022) through quantitative time-series analysis, integrating 

historical and socio-economic factors for objective, data-driven insights. 



A STATISTICAL STUDY ON JUVENILE DELINQUENCY IN INDIA 
 

Department of Mathematics and Statistics, St. Teresa’s College (Autonomous), Ernakulam  4 

4.  Acharya (2017) proposed that Juvenile delinquency is driven by psychological 

factors, with poverty, illiteracy, and family disturbances as key causes. Perceived 

abuse leads to crime, while community rehabilitation is favoured over harsh 

punishment. Despite media focus, most juvenile crimes are non-violent. Gaps 

remain in quantifying long-term psychological and socio-economic influences. 

Research largely focuses on case studies rather than statistical trends, with limited 

empirical analysis of rehabilitation. This study fills these gaps by analyzing juvenile 

delinquency trends in India (1970–2022) using statistical time-series analysis, 

integrating psychological and socio-economic factors for objective insights into 

crime patterns and prevention. 

5. Khairuddin et al (2019) proposed that Crime forecasting has evolved from statistical 

models to artificial intelligence (AI)-based models, with AI proving more effective 

in handling nonlinear crime patterns. While statistical models work well for linear 

and small datasets, AI techniques, particularly deep learning models, offer greater 

accuracy by adapting to complex crime distributions. However, gaps remain in 

long-term crime trend analysis and integrating socio-economic factors such as 

unemployment and GDP into forecasting models. Most studies focus on short-term 

predictions without considering broader influences on crime trends. This study 

addresses these gaps by applying time-series forecasting to juvenile delinquency 

trends in India (1970–2022) using AI-based models like RNN-LSTM. By 

incorporating multivariate analysis, it improves crime trend predictions and 

provides data-driven insights for policy interventions.     

6. Devi and Kavitha (2021) proposed that Crime forecasting using time-series analysis 

and machine learning is crucial for predictive policing. Studies highlight deep 

learning models, especially Recurrent Neural Networks (RNN), for accurate crime 

trend predictions. The N-Beats RNN model enhances forecasting through data 

preprocessing and hyperparameter tuning. However, research mainly focuses on 

short-term predictions, lacking long-term trend analysis and integration of socio-

economic factors. This study fills these gaps by applying RNN-LSTM models to 

forecast juvenile delinquency trends in India (1970–2022), ensuring high accuracy 

and a data-driven approach to crime analysis and prevention. 

7. Dhaka (2021) proposed that Juvenile delinquency is rising globally, with India 

witnessing increasing youth involvement in crimes. The Indian legal system has 

responded by amending the Juvenile Justice Act, allowing juveniles involved in 
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heinous crimes to be tried as adults under Juvenile Justice Board supervision. 

Despite legal reforms, gaps remain in understanding long-term trends and the 

effectiveness of policy changes. Most studies analyze legal provisions rather than 

statistical patterns of juvenile crime over time. This study bridges these gaps by 

analyzing juvenile delinquency trends in India (1970–2022) through time-series 

analysis, offering empirical insights into policy impact and crime patterns. 

8. Khan (2022) proposed that Juvenile delinquency in India, driven by socio-economic 

factors, psychological distress, and systemic challenges, continues to rise despite 

legal reforms like the Juvenile Justice Act, 2015. The Act, influenced by the 

Nirbhaya case, introduced stricter provisions, including trial of 16-year-olds as 

adults for heinous crimes. However, gaps remain in understanding socio-economic 

drivers and assessing legal interventions over time. Existing studies focus on 

judicial responses but lack long-term statistical analysis of crime patterns. This 

study fills the gap by analyzing juvenile delinquency trends (1970–2022) using 

time-series analysis, integrating sociological and legal perspectives to evaluate 

policy impact and intervention effectiveness. 

9.  Atrey and Singh (2023) proposed that Juvenile delinquency in Rajasthan is driven 

by family conflict, peer influence, poverty, child marriage, and school-related 

factors, with serious social consequences. Studies show that poor parental 

supervision, low academic performance, and mental health issues significantly 

contribute to juvenile crime. Existing research highlights the prevalence of 

delinquency and the legal framework but lacks long-term statistical analysis of 

trends and the effectiveness of preventive measures. This study bridges these gaps 

by analyzing juvenile delinquency trends (1970–2022) using time-series analysis, 

integrating sociological, psychological, and legal perspectives. By evaluating risk 

factors and policy interventions, it provides data-driven insights for more effective 

prevention strategies in Rajasthan. 

10. Muthamizharasan and Ponnusamy (2024) proposed that Crime forecasting is 

crucial for law enforcement and public safety, with ARIMA and LSTM as key 

models. ARIMA predicts linear patterns but struggles with complex trends, while 

LSTM captures long-term dependencies, making it better for dynamic crime trends. 

Research confirms LSTM’s superiority, but comparative studies on long-term 

juvenile delinquency trends remain scarce. Few studies explore hybrid models 

(CNN-LSTM) or socio-economic factors in crime forecasting. This study fills these 
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gaps by applying LSTM-based forecasting to juvenile delinquency in India (1970–

2022), comparing it with ARIMA. By merging time-series analysis and machine 

learning, it improves predictive accuracy and informs policy decisions. 
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Chapter 3 

MATERIALS AND METHODS 

 

3.1 DATA SOURCE  

 The data correspond of reported incidents of cases about juvenile delinquency in India 

1970 – 2022  

 The dataset contains 2 variables. It consists of reported incidents of juvenile delinquency 

cases in India from 1970 to 2022. Below are the crucial features of the data  

 1. Year: This variable represents the specific time for which the juvenile delinquency data 

has been recorded. The dataset follows a chronological order from 1970 to 2022.  

 2. Delinquency Rate: This variable indicates the number of reported juvenile delinquency 

cases per a specified population for each time. It helps in assaying trends over time and 

understanding the oscillations in juvenile crime rates.  

 This dataset allows for statistical analysis to examine long- term trends in juvenile 

delinquency, identify implicit factors impacting changes, and make data- driven policy 

recommendations.  

 

 3.2 PYTHON PROGRAMMING LANGUAGE  

 In this project, Python was extensively used for data analysis, statistical modeling, and 

time series forecasting of juvenile delinquency rates in India from 1970 to 2022. Python’s 

powerful libraries, including Pandas and NumPy, were utilized for data preprocessing and 

manipulation, while Matplotlib and Seaborn were employed for visualizing trends and 

patterns. Time series forecasting techniques, such as ARIMA, Linear Regression, 

Exponential Smoothing, and the Holt-Winters Model, were implemented using the 

Statistical models and Scikit-learn libraries. RMSE values were calculated to evaluate 

model performance, ensuring accurate comparisons. Python’s efficiency in handling large 

datasets and automation capabilities streamlined the analysis, making it an essential tool 

for deriving meaningful insights and predictions in this study. 
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3.3 MICROSOFT EXCEL 

 In this project, Microsoft Excel was extensively used for organizing, analyzing, and 

visualizing juvenile delinquency data in India from 1970 to 2022. Excel’s functions and 

formulas were applied for data preprocessing, trend analysis, and statistical calculations. 

PivotTables and charts were utilized to summarize and present delinquency trends 

effectively. Time series forecasting techniques, including ARIMA, Linear Regression, 

Exponential Smoothing, and the Holt-Winters Model, were implemented using Excel’s 

built-in tools and add-ins. RMSE values were calculated to compare model performance. 

Additionally, Excel’s automation features, such as Macros, streamlined repetitive tasks, 

enhancing efficiency in data handling and analysis. 

 

3.4 TIME SERIES  

A time series is a sequence of data points recorded at consistent time intervals such as daily, 

monthly, or yearly, used to track changes over time. It is widely applied in fields like finance, 

economics, meteorology, and social sciences. Examples include daily stock market prices, 

annual rainfall data, and monthly sales revenue of a company. Understanding time series is 

crucial for analyzing trends, identifying patterns, and making future predictions. 

1. Time Series Analysis 

Time series analysis involves examining historical data to identify trends, patterns, and 

relationships over time. This analysis is used to forecast future values and make informed 

decisions. It includes statistical techniques to study underlying behaviors in data and derive 

insights. For example, a company analyzing past sales data to predict future demand for its 

products or a government analyzing unemployment rates to assess economic policies. 

2. Secular Trend (Tt) 

A secular trend represents the long-term upward or downward movement in a time series over 

an extended period. It reflects the overall direction of data while ignoring short-term 

fluctuations. 

Upward Trend: Population growth, increasing e-commerce sales, rising global 

temperatures. 
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Downward Trend: Declining birth rates, decreasing landline telephone usage, reduced 

illiteracy rates. 

For instance, the long-term increase in internet usage worldwide represents an upward trend, 

while the decline in the use of printed newspapers shows a downward trend. 

3. Seasonal Fluctuations (St) 

Seasonal fluctuations are repetitive patterns that occur at fixed intervals, such as annually, 

quarterly, or monthly, due to seasonal factors like weather, holidays, or cultural events. These 

patterns repeat over time and influence business and economic activities. 

4. Cyclic Fluctuations (Ct) 

Cyclic fluctuations are variations that occur over a period longer than a year and follow 

economic or business cycles, which consist of phases like expansion, recession, depression, 

and recovery. Unlike seasonal trends, cyclic changes do not have a fixed periodicity. 

5. Irregular Fluctuations (It) 

Irregular fluctuations are unpredictable and sudden changes in a time series caused by 

unexpected events such as natural disasters, political instability, pandemics, or financial crises. 

These fluctuations do not follow any specific pattern and are usually temporary. 

Understanding these components of a time series helps in making more accurate forecasts, 

planning business strategies, and improving decision-making in various industries. 

 

3.4.1 Simple Moving Average 

The Simple Moving Average (SMA) is a widely used time series analysis technique that 

smooths data by calculating the average of a fixed number of consecutive values over a 

specific period. This method helps to reduce short-term fluctuations, making it easier to 

identify underlying trends and patterns in the data. By continuously updating as new data 

points are added, SMA provides a clearer view of long-term movements, filtering out 

random noise and volatility. It is extensively applied in financial markets for stock price 

analysis, where investors use it to detect trends and potential buy/sell signals. Similarly, 

businesses use SMA for sales forecasting, inventory management, and demand prediction, 

ensuring better decision-making and resource planning. The choice of the period length 
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(e.g., 10-day, 50-day, or 200-day SMA) depends on the level of trend analysis required—

short-term or long-term. Despite its simplicity, SMA is a powerful tool for analyzing 

historical data trends, improving forecasting accuracy, and supporting strategic planning in 

various fields. 

 

3.4.2 Auto-Regressive (AR) Process  

An Autoregressive (AR) process is a fundamental concept in time series analysis, 

representing a type of stochastic process where current values in a series are linearly 

dependent on their past values plus a random error term. It is commonly used for modeling 

time-dependent data, where the assumption is that past observations influence future 

values. The general form of an autoregressive process of order p, denoted as AR(p), 

expresses a time series value as a linear combination of its p previous values, along with a 

white noise error term to account for random variations. Mathematically, it is represented 

as: 

𝑋𝑡= ∅1𝑋𝑡−1 + ∅2𝑋𝑡−2 +....+∅𝑝𝑋𝑡−𝑝 + 𝜀𝑡 

 Where:  

 𝑋𝑡 is the value at time t.  

∅1, ∅2, ...., ∅𝑝 are the finite set of weight parameters.  

 𝜀𝑡 is the white noise term or errors at time t. 

The AR process is widely used in various fields such as finance, economics, climatology, 

and engineering for modeling and forecasting time-dependent data. For example, in 

financial markets, AR models help predict stock prices, exchange rates, and interest rates 

by analyzing past trends. In meteorology, they are used to model temperature fluctuations 

and weather patterns. The choice of order p determines how many past values influence the 

current observation, and this order is typically selected using criteria like the Akaike 

Information Criterion (AIC) or Bayesian Information Criterion (BIC). The AR process is a 

key component of more advanced models like Autoregressive Integrated Moving Average 

(ARIMA) and is essential for understanding time series dynamics and making reliable 

future predictions. 
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3.4.3 Moving Average (MA) Process 

A Moving Average (MA) process is a fundamental stochastic process used in time series 

analysis to model a sequence of random variables, where each value in the series is expressed 

as a linear combination of current and past white noise (error) terms. Unlike an Autoregressive 

(AR) process, which relies on past values of the time series itself, an MA process depends 

solely on past forecast errors, making it useful for capturing short-term dependencies and 

smoothing fluctuations in time series data. 

The general form of a Moving Average process of order q denoted as MA(q), can be expressed 

as: 

𝑋𝑡= Ɵ1𝜀𝑡−1 + Ɵ2𝜀𝑡−2 +…..+ Ɵ𝑞𝜀𝑡−𝑞 +𝜀𝑡 

where: 

 𝑋𝑡 is the value at time t.  

Ɵ1, Ɵ2, ….. ,Ɵ𝑞 are the moving average coefficients.  

 q is the order of the MA process.  

𝜀𝑡 is the white noise term. 

The MA process is particularly useful for modeling time series data that exhibit short-term 

dependencies but no long-term trend, such as financial returns, economic indicators, and 

temperature anomalies. It helps smooth out random fluctuations by averaging past errors, 

making it valuable for forecasting, signal processing, and economic modeling. 

A key advantage of the MA model is its ability to capture shocks or sudden changes in data 

since each observation is directly influenced by recent random disturbances. It is widely used 

in combination with AR models in more advanced frameworks like the Autoregressive Moving 

Average (ARMA) model and the Autoregressive Integrated Moving Average (ARIMA) model, 

which are essential for predictive analytics and trend analysis. The order q of the MA process 

is usually determined using statistical techniques such as the Autocorrelation Function (ACF) 

and model selection criteria like the Akaike Information Criterion (AIC) or Bayesian 

Information Criterion (BIC). 
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3.4.4 Auto-Regressive Integrated Moving Average (ARIMA) Model 

The Autoregressive Integrated Moving Average (ARIMA) model is one of the most widely 

used methods for time series forecasting, combining autoregressive (AR), differencing (I), and 

moving average (MA) components to model and predict complex time-dependent data. It is 

particularly useful for data that exhibit trends or seasonality, making it a fundamental tool in 

fields such as economics, finance, weather forecasting, and demand forecasting. 

Structure of ARIMA (p, d, q): 

ARIMA is represented as ARIMA (p, d, q), where: 

p (Autoregressive order) – Specifies the number of past values used to predict future 

values. The AR component assumes that past observations influence the current value 

through a linear relationship. 

d (Degree of differencing) – Represents the number of times the data needs to be 

differenced to make the time series stationary. Differencing helps remove trends and 

stabilize the mean, ensuring that the statistical properties of the series do not change 

over time. 

q (Moving average order) – Defines how many past forecast errors are used to correct 

future predictions. The MA component captures the impact of random shocks or noise 

in the data. 

Key Features and Assumptions of ARIMA: 

1. Stationarity – ARIMA assumes that the input data is stationary, meaning its mean, 

variance, and autocorrelation remain constant over time. If a dataset is non-stationary, 

it must be transformed through differencing or other techniques. 

2. Univariate Data – ARIMA is designed for single-variable (univariate) time series 

forecasting, meaning it works best when analyzing a single dependent variable over 

time without external influences. 

3. Past Dependency – The model assumes that future values depend on past values (AR 

component) and past forecast errors (MA component). 
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4. No Seasonality – ARIMA does not inherently account for seasonal patterns; however, 

an extended version called SARIMA (Seasonal ARIMA) is used for datasets with 

seasonal variations. 

Model Selection and Evaluation: 

The optimal values of p, d, and q are determined using statistical tools such as: 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) to 

identify p and q. 

Augmented Dickey-Fuller (ADF) Test to check for stationarity. 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to 

compare different ARIMA models and select the best fit. 

Due to its ability to model linear relationships in time series data, ARIMA remains one of the 

most powerful forecasting techniques. However, for complex datasets with multiple 

influencing variables, advanced models like SARIMA, VAR (Vector Autoregression), and 

machine learning-based time series models may be more effective. 

 

3.4.5 Auto Correlation Function 

The Autocorrelation Function (ACF) is a fundamental statistical tool used in time series 

analysis to measure the correlation between a time series and its lagged values at different time 

points. It helps in understanding how past observations influence current values, making it a 

crucial component in forecasting models such as Autoregressive (AR), Moving Average (MA), 

ARMA, and ARIMA models. 

Definition and Importance of ACF: 

Autocorrelation refers to the degree of similarity between a given time series and a lagged 

version of itself over successive time intervals. The ACF function calculates the correlation 

coefficient between a time series and its past values at different lags. If the autocorrelation is 

high at a particular lag, it indicates that past values strongly influence future values, which is 

useful for trend analysis, pattern recognition, and forecasting. 

Mathematically, the autocorrelation at lag k is given by: 



A STATISTICAL STUDY ON JUVENILE DELINQUENCY IN INDIA 
 

Department of Mathematics and Statistics, St. Teresa’s College (Autonomous), Ernakulam  14 

ACF(k) = 
∑ (𝑋𝑡−𝑋̅)−(𝑋𝑡+𝑘−𝑋̅)𝑁−𝑘

𝑡=1

∑ (𝑋𝑡−𝑋̅)𝑁
𝑡=1

2  

where: 

𝑋𝑡 represents the time series values at time t. 

𝑋 ̅is the mean of the series. 

k is the time lag. 

N is the total number of observations. 

Uses of ACF in Time Series Analysis: 

1. Determining the Order of Moving Average (MA) Models: 

ACF is particularly useful in identifying the appropriate order (q) of an MA(q) 

model in ARIMA modeling. A significant autocorrelation at a certain lag 

indicates that past forecast errors at that lag influence current values. 

2. Detecting Seasonality and Cyclical Patterns: 

If the ACF shows periodic spikes at regular intervals, it suggests a seasonal or 

cyclical pattern in the time series. This is essential in selecting SARIMA 

(Seasonal ARIMA) models for forecasting seasonal data. 

3. Checking for Stationarity: 

A slowly declining or high autocorrelation at higher lags suggests that the time 

series may be non-stationary. In such cases, differencing the data can help 

remove trends and stabilize variance. 

4. Evaluating Forecast Accuracy: 

ACF is used to analyze the residuals of a forecasting model to check whether 

they exhibit any pattern. If residuals still show significant autocorrelation, it 

indicates that the model may need improvement. 

Interpreting the ACF Plot: 

An ACF plot is a graphical representation of the correlation coefficients at various lags. The 

interpretation is as follows: 
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If the ACF decreases gradually with increasing lags, it suggests a strong trend 

component in the data. 

If the ACF has significant spikes at regular intervals, it indicates seasonality. 

If the ACF drops sharply to near zero after a few lags, it suggests that an MA(q) model 

may be appropriate for the data. 

 

3.4.6 Partial Auto Correlation Function 

The Partial Autocorrelation Function (PACF) is a key statistical tool in time series analysis that 

measures the direct correlation between a time series and its lagged values while removing the 

effects of intermediate lags. Unlike the Autocorrelation Function (ACF), which considers the 

cumulative influence of all previous observations, PACF isolates the pure relationship between 

a time series and a specific lag, making it an essential tool for model selection in forecasting. 

Definition and Importance of PACF 

PACF helps in identifying the true relationship between past observations and the present value 

of a time series by eliminating indirect influences. This is particularly useful in selecting the 

appropriate order (p) of an Autoregressive (AR) model in ARIMA modeling. 

Mathematically, the PACF at lag k represents the correlation between 𝑋𝑡 and 𝑋𝑡−𝑘 after 

removing the contributions of all intermediate lags (𝑋𝑡−1,𝑋𝑡−2,…..,𝑋𝑡−𝑘+1). It is computed 

using regression techniques where each lagged value is regressed on all previous lags, and the 

residual correlation is taken as the partial autocorrelation. 

Uses of PACF in Time Series Analysis 

1. Determining the Order of Autoregressive (AR) Models 

PACF is primarily used to identify the order (p) of an AR(p) model in ARIMA 

modeling. If the PACF shows significant correlation at a particular lag p but 

drops to near zero afterward, it indicates that the data follows an AR(p) process. 

2. Distinguishing Between AR and MA Processes 

If the ACF gradually declines while PACF cuts off sharply after a few lags, it 

suggests an AR process. 
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If the PACF declines gradually while ACF cuts off after a few lags, it suggests 

a Moving Average (MA) process. 

3. Identifying Stationarity in a Time Series 

A slowly decaying PACF at increasing lags may indicate a non-stationary time 

series. Differencing the data can help transform it into a stationary series before 

applying ARIMA modeling. 

4. Selecting the Correct Forecasting Model 

PACF is crucial in determining whether a time series follows an ARIMA (p, d, 

q) or MA(q) model, ensuring accurate forecasting. 

Interpreting the PACF Plot 

A PACF plot is a graphical representation where: 

Significant spikes at a particular lag p followed by a sharp decline suggest an AR(p) 

process. 

A gradual decline in PACF but a sharp cutoff in ACF suggests an MA(q) process. 

Significant spikes at multiple lags suggest seasonality or a mix of AR and MA 

processes. 

 

3.4.7 Augmented Dickey-Fuller test 

The Augmented Dickey-Fuller (ADF) test is a widely used statistical test in time series analysis 

to determine whether a given time series is stationary or non-stationary. Stationarity is a key 

assumption in many forecasting models, including ARIMA, as non-stationary data can produce 

unreliable predictions and misleading results. The ADF test is an extension of the Dickey-Fuller 

test, incorporating lagged differences of the time series to account for autocorrelation, making 

it more robust for real-world data. 

Concept of Stationarity and Unit Root 

A time series is stationary if its statistical properties, such as mean, variance, and 

autocorrelation, remain constant over time. Conversely, a non-stationary series exhibits trends, 

seasonality, or changing variance. The ADF test checks for the presence of a unit root, a 



A STATISTICAL STUDY ON JUVENILE DELINQUENCY IN INDIA 
 

Department of Mathematics and Statistics, St. Teresa’s College (Autonomous), Ernakulam  17 

characteristic of non-stationary time series, to determine whether differencing is required 

before applying forecasting models. 

Hypotheses of the ADF Test 

Null Hypothesis (H₀): The series is non-stationary (has a unit root)  

If the null hypothesis is not rejected, the data exhibits trends, and differencing 

is required to make it stationary. 

Alternative Hypothesis (H₁): The series is stationary (no unit root)  

If the null hypothesis is rejected, the data is already stationary, meaning its 

statistical properties remain stable over time. 

ADF Test Formula 

The ADF test is based on the regression equation: 

∆𝑌𝑡 = 𝛼 + 𝛽t + 𝛾𝑌𝑡−1 + ∑ 𝛿𝑖∆𝑌𝑡−𝑖 + 𝜖𝑡 

Where: 

𝑌𝑡 is the time series at time t 

Δ𝑌𝑡 = 𝑌𝑡 - 𝑌𝑡−1represents the first difference of the series 

α is a constant (intercept) 

βt represents a trend component (optional) 

𝛾𝑌𝑡−1 tests whether the series has a unit root 

𝛿𝑖 are the coefficients of the lagged differences 

𝜖𝑡 is white noise (random error) 

Interpreting ADF Test Results 

The test produces a test statistic, which is compared against critical values at significance levels 

(1%, 5%, and 10%): 

If the test statistic is less than the critical value, the null hypothesis is rejected, indicating 

stationarity. 
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If the test statistic is greater than the critical value, the null hypothesis is not rejected, 

meaning the series is non-stationary and needs differencing. 

 

3.4.8 Seasonal data 

A time series is considered seasonal when it exhibits repeating patterns at regular intervals due 

to factors like weather, holidays, or business cycles. These variations occur daily, monthly, or 

annually and help in understanding trends for accurate forecasting. 

For example, retail sales peak during festive seasons, tourism rises in summer, and electricity 

consumption fluctuates with seasons. Identifying seasonality aids in business planning, 

inventory management, and financial forecasting. 

Statistical methods like STL decomposition and forecasting models such as SARIMA and Holt-

Winters help analyze and predict seasonal effects, ensuring better decision-making in time 

series forecasting. 

 

3.4.9 Akaike Information Criterion (AIC) 

The Akaike Information Criterion (AIC) is a widely used statistical measure in model selection, 

particularly in time series analysis and machine learning, to determine the best-fitting model 

among a set of competing models. It evaluates models based on their goodness of fit while also 

penalizing excessive complexity to prevent overfitting. The AIC is designed to strike a balance 

between model accuracy and simplicity, ensuring that the chosen model is both effective and 

generalizable to new data. 

AIC can be calculated using the following formula: 

 AIC = -2 * ln(L) + 2 * k 

Where:  

L is the maximized value of the likelihood function of the model.  

k is the number of parameters in the model. 
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A lower AIC value indicates a better model, meaning it achieves a good fit with fewer 

parameters. When comparing multiple models, the one with the smallest AIC is preferred. 

However, AIC values are relative, meaning they are only useful when comparing models fitted 

to the same dataset. 

AIC is widely applied in autoregressive models (AR), moving average models (MA), ARIMA 

models, and regression analysis to identify the most efficient model for forecasting. It helps 

researchers and analysts make data-driven decisions by selecting models that provide accurate 

predictions without unnecessary complexity. However, AIC does not directly assess model 

accuracy but rather provides a trade-off between fit and complexity, making it a crucial tool in 

model evaluation and selection. 

 

3.4.10 Model Fitting 

Model fitting is the process of estimating a model's parameters to ensure that it accurately 

represents the underlying patterns and relationships in a given dataset. The primary goal of 

model fitting is to identify a model that provides the best balance between accuracy and 

generalization, meaning it should perform well not only on the training data but also on unseen 

data. A well-fitted model captures the essential trends and patterns in the data without 

overfitting (capturing noise) or underfitting (failing to capture important details). 

Model fitting involves several steps, including selecting an appropriate model type, estimating 

its parameters, and evaluating its performance using statistical measures such as mean squared 

error (MSE), root mean squared error (RMSE), R-squared (R²), and information criteria like 

AIC or BIC. Techniques like maximum likelihood estimation (MLE), least squares regression, 

and gradient descent are commonly used to optimize model parameters. 

In time series analysis, model fitting plays a crucial role in forecasting, where models like 

ARIMA, Exponential Smoothing, and Holt-Winters are trained to capture temporal patterns. 

In machine learning, fitting refers to training algorithms like linear regression, decision trees, 

and neural networks to minimize error and improve predictive performance. Proper model 

fitting ensures that the selected model is both accurate and efficient, making it a critical step in 

statistical analysis, forecasting, and predictive modeling. 
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3.4.11 Forecasting 

Forecasting is the process of estimating future trends, values, or events based on historical data, 

statistical techniques, and mathematical models. It plays a crucial role in decision-making 

across various domains, including finance, economics, business, weather prediction, and 

supply chain management. Forecasting helps organizations anticipate market demand, resource 

allocation, revenue projections, and risk assessment, enabling them to plan effectively and 

make data-driven decisions. 

In time series forecasting, past observations are analyzed to predict future values. This 

approach includes methods like moving averages, exponential smoothing, and ARIMA models, 

which identify patterns such as trends, seasonality, and cyclic behavior. Qualitative forecasting 

relies on expert judgment, market research, and scenario analysis, making it useful in cases 

where historical data is limited or unreliable, such as new product launches or geopolitical 

events. Quantitative forecasting, on the other hand, uses statistical models, regression analysis, 

and machine learning algorithms to generate precise and data-driven predictions. 

Forecasting can be classified based on the time horizon: short-term forecasting (days to 

months) is used for inventory management, staffing, and daily operations, while long-term 

forecasting (years to decades) aids in strategic planning, investment decisions, and economic 

policy formulation. Effective forecasting improves efficiency, reduces uncertainty, and 

enhances business competitiveness, making it an essential tool in analytics and predictive 

modelling. 

 

3.4.12 Residual analysis 

Residual analysis is a crucial step in model validation, used to evaluate how well a model 

captures patterns in data by examining the residuals—the differences between actual observed 

values and model-predicted values. It helps assess model accuracy, reliability, and assumptions, 

ensuring that predictions are unbiased and errors follow expected statistical properties. 

Residual analysis is widely applied in regression analysis, time series forecasting, and machine 

learning to diagnose model performance and identify potential improvements. 

A well-fitted model should have residuals that are randomly distributed with zero mean and 

constant variance (homoscedasticity). If residuals show non-random patterns, such as 

systematic trends, increasing or decreasing variance, or autocorrelation, it may indicate model 
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deficiencies like underfitting (failing to capture essential patterns), overfitting (too closely 

modeling noise), or incorrect assumptions (such as non-linearity or omitted variables). 

Statistical tests like the Durbin-Watson test (for autocorrelation), Breusch-Pagan test (for 

heteroscedasticity), and normality checks (e.g., Q-Q plots, Shapiro-Wilk test) are commonly 

used to assess residual behavior. 

By analyzing residuals, data scientists and analysts can refine models, select better features, 

and ensure that the assumptions underlying statistical models hold true. Effective residual 

analysis enhances forecasting accuracy, improves decision-making, and increases confidence 

in predictive modeling outcomes across various fields, including finance, economics, 

healthcare, and engineering. 

 

3.4.13 Model evaluation 

Model accuracy is assessed using various error metrics to evaluate how well a model's 

predictions align with actual values. Two widely used metrics in regression and time series 

forecasting are Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). 

MSE calculates the average squared difference between predicted and observed values, 

emphasizing larger errors due to squaring. It is given by: 

MSE = 
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

𝑛
𝑖=1

2
 

where 𝑦𝑖 represents actual values, 𝑦𝑖̂ represents predicted values, and nn is the number of 

observations. A lower MSE indicates a better model fit. 

RMSE is derived by taking the square root of MSE, making it easier to interpret since 

it is in the same units as the original data: 

RMSE = √𝑀𝑆𝐸 

RMSE provides an intuitive measure of prediction error, with lower values indicating higher 

model accuracy. 

Both MSE and RMSE are essential for comparing models, fine-tuning parameters, and 

ensuring reliable forecasting in various fields like finance, healthcare, and engineering. 

However, since they are sensitive to large errors, they are often complemented by other metrics 
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like Mean Absolute Error (MAE) or Mean Absolute Percentage Error (MAPE) for a 

comprehensive evaluation. 

 

3.5 REGRESSION 

Regression analysis is a powerful statistical technique used to model relationships between a 

dependent variable (response variable) and one or more independent variables (predictors or 

regressors). It helps identify the strength, direction, and significance of these relationships, 

making it a fundamental tool in forecasting, trend analysis, and decision-making across various 

fields like finance, economics, healthcare, and social sciences. 

 

3.5.1 Linear Regression Model 

Steps for Determining the Trend Line Using Linear Regression 

1. Define Variables: Identify the independent variable (Year) and the dependent variable 

(Delinquency Rate) to detect trends over time. 

2. Collect Data: Gather historical data covering multiple years to ensure accurate trend 

detection. 

3. Preprocess Data: Check for missing values or inconsistencies and clean the dataset to 

ensure reliability. 

4. Apply Linear Regression: Fit a Simple Linear Regression model to the data using the 

equation: Y= 𝛽0+ 𝛽1 *X + ε, where Y is the delinquency rate, X is the year, β₀ is the 

intercept, β₁ is the slope, and ε is the error term. 

5. Interpret the Trend Line: Analyze the slope (β₁) to determine whether the delinquency 

rate is increasing, decreasing, or stable over time. A positive slope indicates an upward 

trend, while a negative slope suggests a downward trend. 
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3.6 SMOOTHING 

In terms of Data analytics and Statistics smoothing refers to technique in which we can reduce 

the variability in data. By adopting smoothing techniques we can create a smooth 

representation of data. In this method, we usually calculate the average of nearby data points 

or use some mathematical model to the data trend. Smoothing methods are generally applied 

to those data sets which we are unable or difficult to find trend and patterns which may affect 

our prediction. These methods of smoothing are used in signal processing, time series analysis, 

machine learning etc 

 

3.6.1 Exponential Smoothing  

Exponential Smoothing is a widely used method in time series analysis for smoothing data and 

forecasting future values. It is particularly effective for datasets that exhibit trends or 

seasonality, making it applicable to real-world problems where such patterns are common. The 

method assigns exponentially decreasing weights to past observations, giving more importance 

to recent data points. 

Steps in Exponential Smoothing Model 

1. Initialize the Level Estimate: Choose an initial value for the level, which can be the first 

observation in the dataset or determined using statistical measures like the mean or 

mode. 

2. Apply the Smoothing Equation: For each observation, compute the smoothed value 

using the formula: 

                                           𝑆𝑡= α𝑌𝑡+ (1−α) 𝑆𝑡−1 

  Where:  

                                    𝑆𝑡 = Smoothed value at time t 

𝑌𝑡 = Actual observation at time t 

𝑆𝑡−1 = Smoothed value of the previous time period 

α = Smoothing constant, controlling the level of smoothing  
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Update the Level Estimate: The newly computed smoothed value 

becomes the level estimate for the next observation. 

3. Repeat the Process for All Observations: Continue applying the smoothing equation for 

all observations until the last data point is reached. 

4. Forecast Future Values: Use the last smoothed value to estimate future data points based 

on the exponential smoothing formula. 

5. Evaluate Forecast Accuracy: Compute error metrics such as:  

Mean Absolute Error (MAE) 

Mean Squared Error (MSE) 

Root Mean Squared Error (RMSE) 

 

3.6.2 Holt-Winters Forecasting 

Holt-Winters Exponential Smoothing is an extension of exponential smoothing that accounts 

for both trends and seasonality. It is commonly used for forecasting time series data where 

patterns repeat over fixed periods. 

Steps in Holt-Winters Model 

1. Initialize Components: Set initial values for the level (L), trend (T), and seasonal (S) 

components based on historical data. 

2. Update Level, Trend, and Seasonality: Compute the smoothed values using the 

following equations: 

Level:  

                  𝐿𝑡 = α
𝑌𝑡

𝑆𝑡−𝑚
  + (1−α) (𝐿𝑡−1+𝑇𝑡−1) 

Trend: 

                    𝑇𝑡 = β(𝐿𝑡− 𝐿𝑡−1) + (1−β)𝑇𝑡−1  

Seasonality:  

                      𝑆𝑡= γ
𝑌𝑡 

𝐿𝑡
 + (1−γ)𝑆𝑡−𝑚 
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Where:  

𝐿𝑡 = Level component at time t 

𝑇𝑡 = Trend component at time t 

𝑆𝑡 = Seasonal component at time t 

m = Length of the seasonal cycle 

α, β, γ = Smoothing constants controlling how much weight is given to 

recent data 

3. Repeat for All Observations: Update L, T, and S for each time step using the above 

formulas. 

4. Forecast Future Values: Use the last computed values of L, T, and S to forecast future 

data points using: 𝑌𝑡+ℎ̂= (𝐿𝑡+h𝑇𝑡)𝑆𝑡+ℎ−𝑚,where h is the forecasting horizon. 

5. Evaluate Forecast Accuracy: Measure performance using MAE, MSE, and RMSE to 

assess the accuracy of the forecast. 

 

 

3.7 TOOLS USED FOR COMPARISON 

The present study uses Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) for 

comparison of models. 

 Mean Squared Error (MSE) is the average value of squared difference between actual and 

predicted values.  

Root Mean Squared Error (RMSE) is the square root of Mean Squared Error (MSE). 

Both Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) can be used to 

compare the difference model performance on certain data. 

 

 

 



A STATISTICAL STUDY ON JUVENILE DELINQUENCY IN INDIA 
 

Department of Mathematics and Statistics, St. Teresa’s College (Autonomous), Ernakulam  26 

Chapter 4 

RESULTS AND ANALYSIS 

 

4.1 DATA DESCRIPTION 

 

For the purpose of the study, the data was collected from the National Crime Records Bureau 

official website (https://ncrb.gov.in). The data consists of yearly records from 1970 to 2022. 

This dataset provides a comprehensive overview of juvenile delinquency rates across the 

specified years. For analysis, the data has been organized into a structured format to facilitate 

insights and comparisons over the study period. 

 

 

4.2 ARIMA MODELLING 

To analyze and predict juvenile delinquency trends in India, the ARIMA model was used to 

forecast delinquency rates for the years 2023 to 2027. ARIMA is a powerful tool for time series 

analysis, as it accounts for non-seasonal patterns by utilizing historical trends and assumes the 

data is stationary and univariate. 

        

 4.2.1 Time series plot 

Figure 4.1 is the time series plot of the juvenile delinquency rates data from 1970 to 2022. 

 

 

Figure 4.1 Time series plot of the juvenile delinquency rates 
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 4.2.2 Decomposition of time 

The second step perform seasonal decomposition to capture the trend, seasonal and random 

components of time series. Figure 4.2 depict the seasonal plot. 

 

Figure 4.2 Seasonal decomposition plot 

 

4.2.3 Stationarity check using Augmented Dickey- Fuller Test 

To test the time series data for stationarity using ADF test, follows a hypothesis testing 

approach. The null hypothesis H0 is given by,  

H0: The data is non stationary. 

 The alternative hypothesis H1 is given by, 

 H1: The data is stationary.  

The outcome achieved, ADF test statistic = -2.4675596535198423, Lag order = 6, p-value = 

0.12356821958177372 

 The ADF test gives the p-value 0.12356821958177372, which is greater than 0.05, so accept 

the null hypothesis i.e.; the data is non stationary, hence we perform n order differencing until 

we get time series stationary We perform differencing with n = 1 Now we again check 

stationarity using ADF test. 

 Here we test the hypothesis, 

 H0: The data is non-stationary. 

 Against  

H1: The data is stationary.  

ADF test statistic =-5.351559, Lag order = 6, p-value= 0.000004 The ADF test gives the p-

value0.000004, which is smaller than 0.05, so reject the null hypothesis H0 and Hence, we can 

conclude that data is stationary; Figure 4.3 shows the differenced delinquency rates. 
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Figure 4.3 Plot of differenced delinquency rates 

            

4.2.4 Autocorrelation and Partial Autocorrelation Function 

Next step in Time Series Analysis is to plot and examine Autocorrelation Function (ACF) and 

Partial Autocorrelation Function (PACF). ACF &PACF Plot is given in Figure 4.4. 

 

 

Figure 4.4 Autocorrelation Function & Partial Autocorrelation Function Plot 

4.2.5 ARIMA Model for delinquency rates 
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In this step we choose the best model for forecasting the values. It is done by choosing one 

model from all possible models according to Akaike Information Criterion (AIC). The model 

with lowest AIC value is chosen as the best model. Below Table 4.1 shows the possible models 

with their AIC values. 

                                          

Table 4.1 The model with AIC value 

SL NO. MODEL ARIMA 

(p, d, q) x (P, D, Q) 

AIC 

1 ARIMA (0, 1, 0) x (0, 0, 0) 1004.0658 

2 ARIMA (0, 1, 1) x (0, 0, 0) 981.8864 

3 ARIMA (0, 1, 2) x (0, 0, 0) 964.6589 

4 ARIMA (0, 1, 3) x (0, 0, 0) 946.6425 

5 ARIMA (0, 1, 4) x (0, 0, 0) 928.1296 

6 ARIMA (0, 1, 5) x (0, 0, 0) 907.7286 

7 ARIMA (1, 1, 0) x (0, 0, 0) 1002.4053 

8 ARIMA (1, 1, 1) x (0, 0, 0) 983.8744 

9 ARIMA (1, 1, 2) x (0, 0, 0) 966.5088 

10 ARIMA (1, 1, 3) x (0, 0, 0) 948.5292 

11 ARIMA (1, 1, 3) x (0, 0, 0) 927.9114 

12 ARIMA (1, 1, 5) x (0, 0, 0) 908.7660 

13 ARIMA (2, 1, 0) x (0, 0, 0) 983.0972 

14 ARIMA (2, 1, 1) x (0, 0, 0) 985.1166 

15 ARIMA (2, 1, 2) x (0, 0, 0) 967.2678 

16 ARIMA (2, 1, 3) x (0, 0, 0) 944.6161 

17 ARIMA (2, 1, 4) x (0, 0, 0) 925.0720 

18 ARIMA (2, 1, 5) x (0, 0, 0) 907.4081 

19 ARIMA (3, 1, 0) x (0, 0, 0) 965.8004 

                20 ARIMA (3, 1, 1) x (0, 0, 0) 965.8859 

21 ARIMA (3, 1, 2) x (0, 0, 0) 965.4729 

22 ARIMA (3, 1, 3) x (0, 0, 0) 939.9363 

23 ARIMA (3, 1, 4) x (0, 0, 0) 919.5848 

24 ARIMA (3, 1, 5) x (0, 0, 0) 909.4331 

25 ARIMA (4, 1, 0) x (0, 0, 0) 946.4052 

26 ARIMA (4, 1, 1) x (0, 0, 0) 947.9586 

27 ARIMA (4, 1, 2) x (0, 0, 0) 944.5428 

28 ARIMA (4, 1, 3) x (0, 0, 0) 940.6651 

29 ARIMA (4, 1, 4) x (0, 0, 0) 921.2991 

30 ARIMA (4, 1, 5) x (0, 0, 0) 905.3694 

31 ARIMA (5, 1, 0) x (0, 0, 0) 928.7157 

32 ARIMA (5, 1, 1) x (0, 0, 0) 930.3933 

33 ARIMA (5, 1, 2) x (0, 0, 0) 926.9935 
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34 ARIMA (5, 1, 3) x (0, 0, 0) 923.2703 

35 ARIMA (5, 1, 4) x (0, 0, 0) 924.5933 

36 ARIMA (5, 1, 5) x (0, 0, 0) 907.3538 

 

Here the best model is ARIMA (4, 1, 5) x (0, 0, 0) with AIC value 905.3694 

 

Coefficients: 

 ar.L1 ar.L2 ar.L3 ar.L4 ma.L1 ma.L2 ma.L3 ma.L4 ma.L5 

 0.8331 -0.8835 0.6520 -0.2426 -1.1904 0.9380 -0.6797 0.7338 0.6324 

std 

err 

0.206 0.272 0.266 0.162 0.301 0.481 0.424 0.444 0.432 

 

4.2.6 Diagnostic checking 

Diagnostics checking is performed for confirming the validity, effectiveness and reliability of 

statistical models. The main objective of it is to choose the right and best model. Below figure 

4.5 shows the diagnostic plot. 

 

 

Figure 4.5 Diagnostic plot 

 From Q-Q plot, it is clear that most of the residuals are on the same line and standard residual 

are normally fitted 
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4.2.7 Forecasting the Sample 

Forecasting the future and predicting the actual data points or the training data points. Here 

evaluate model performance on training data. Figure 4.6 is the plot of actual and predicted 

values. 

 

Figure 4.6 Plot of actual and predicted values 

 

4.2.8 Forecasting the Future Values 

The forecasted juvenile delinquency rates data from 2023 to 2027 is given in Table 4.2. 

  

Table 4.2 Forecasted juvenile delinquency rates 

Year Forecasted 

Values 

LCL UCL 

2023 40089.361223 20439.884961 37532.837485 

2024 41617.647742 15617.635356 42817.660129 

2025 43119.399848 11747.873881 46290.925816 

2026 44491.022597 8265.235837 47716.809356 

2027 46065.160297 6084.528473 49685.792120 

                                                                          

 

The Figure 4.7 shown below is the graph of forecasted juvenile delinquency rates data from 

2023 to 2027. 
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Figure 4.7 forecasted juvenile delinquency rates plot 

 

 

 

4.3 REGRESSION ANALYSIS MODEL 

Linear Regression was applied to analyze the trend line, as it effectively studies the relationship 

between variables under the assumption that the dependent variable changes proportionally 

with the independent variable. 

 

4.3.1 LINEAR REGRESSION MODEL 

   Figure 4.8 is the plot of actual Juvenile Delinquency Rate Over Years and Figure 4.9 is the 

plot of linear trend line of Delinquency Rate 

 



A STATISTICAL STUDY ON JUVENILE DELINQUENCY IN INDIA 
 

Department of Mathematics and Statistics, St. Teresa’s College (Autonomous), Ernakulam  33 

 

Figure 4.8 plot of actual Juvenile Delinquency Rate Over Years using linear regression 

 

 

Figure 4.9 Plot of linear trend line of Delinquency Rate 
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4.4 EXPONENTIAL SMOOTHING MODEL 

 

      In this study, the smoothing parameter (alpha) is a key constant chosen based on the 

characteristics of the data. A smaller alpha value results in greater smoothing, reducing noise 

and fluctuations, while a larger value makes the model more responsive to recent changes. To 

effectively capture trends and patterns in juvenile delinquency rates, an alpha value of 0.1 was 

selected. This choice ensures a balanced smoothing effect, helping to remove short-term 

variations while preserving the overall trend, making it suitable for forecasting and trend 

analysis using Exponential Smoothing and Holt-Winters Forecasting. 

 

4.4.1 Forecasting future values 

Using Python and the equations for Single Exponential Smoothing and Holt-Winters 

Forecasting, we forecasted the juvenile delinquency rate for the years 2023 to 2032. The table 

4.3 shown below presents the forecasted values obtained through these methods, providing 

insights into future trends in juvenile delinquency based on historical patterns. 

 

Table 4.3 Forecasted juvenile delinquency rates using Holt-Winters Forecasting 

Year Holt Winters Forecast 

2023 30712.529571 

2024 30865.623619 

2025 31018.717667 

2026 31171.811716 

2027 31324.905764 

2028 31477.999812 

2029 31631.093860 

2030 31784.187908 

2031 31937.281956 

2032 32090.376004 

 

 

4.4.2 Forecasting the Sample 

Forecasting the future involves predicting the actual data points based on historical trends. In 

this study, model performance is evaluated using the training data. Figure 4.10 presents the plot 

of actual versus predicted values, showcasing how well the model fits the historical data. 

Additionally, displays the forecasted juvenile delinquency rates from 2023 to 2032, using the 

Holt-Winters Forecasting Model to capture both trend and seasonal variations for better 

accuracy. 
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Figure 4.10 plot of actual versus predicted values and forecasted juvenile delinquency rates 

 

4.5 COMPARISON OF RMSE AND MSE VALUES 

To determine the best model between ARIMA and the Holt-Winters Forecasting Model, a 

comparison of their RMSE values is conducted. Mean Squared Error (MSE) represents the 

average squared difference between actual and predicted values, while Root Mean Squared 

Error (RMSE) is the square root of MSE, providing a more interpretable measure of error. The 

comparison of RMSE values for the ARIMA model and Holt-Winters Forecasting Model is 

presented in Table 4.4, highlighting their forecasting accuracy. 

 

 

Table 4.4 The comparison of RMSE values for the ARIMA model and Holt-Winters 

Forecasting Model 

 ARIMA model Exponential smoothing 

model 

RMSE 6093.8429 5443.08 

 

 

From Table 4.4, it is evident that the Holt-Winters Forecasting Model has a smaller RMSE 

value compared to the ARIMA model. Based on the RMSE values, it can be concluded that the 

Holt-Winters Forecasting Model performs better than the ARIMA model and can be considered 

the best model for this study in terms of forecasting accuracy. 

To enhance prediction accuracy, Exponential Smoothing and Holt-Winters Forecasting were 

also implemented. Exponential Smoothing is a widely used forecasting technique that assigns 
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exponentially decreasing weights to past observations, making it useful for smoothing data and 

predicting future trends. The Holt-Winters Model, an extension of Exponential Smoothing, was 

applied to capture both trend and seasonal components in the data, improving forecasting 

precision. 

 

Lastly, a comparative analysis was conducted between ARIMA and Holt-Winters Forecasting 

to evaluate their predictive performance. By assessing different forecasting techniques, this 

study ensures a comprehensive understanding of juvenile delinquency trends in India, allowing 

for more informed policy decisions. 
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Chapter 5 

CONCLUSION 

 

This study aimed to analyze and forecast juvenile delinquency trends in India using historical 

data from 1970 to 2022. Through the application of various time series forecasting 

methodologies, including ARIMA, Linear Regression, Exponential Smoothing, and Holt-

Winters Forecasting, a comprehensive understanding of the patterns and trends in juvenile 

delinquency rates was developed. 

The analysis began with data visualization and pre-processing steps, including stationarity 

checks and decomposition of time series components to identify trends and seasonality. The 

Augmented Dickey-Fuller (ADF) test was employed to assess the stationarity of the data. The 

initial test confirmed the presence of non-stationarity, leading to first-order differencing to 

achieve stationarity, which was essential for further time series modeling. 

The ARIMA model was extensively tested by evaluating various parameter combinations to 

select the best-fitting model based on the Akaike Information Criterion (AIC). The best-

performing ARIMA model was identified as ARIMA (4,1,5) with an AIC value of 905.3694. 

Diagnostic checks, including residual analysis, were conducted to validate the model's 

reliability. The ARIMA model was then used to forecast juvenile delinquency rates for the 

period 2023 to 2027. 

Additionally, a Linear Regression model was employed to analyze long-term trends in 

delinquency rates. The linear trend analysis provided valuable insights into the overall direction 

of juvenile delinquency rates over time but lacked the capability to capture non-linearity and 

seasonal variations in the data. 

To further enhance forecasting accuracy, Exponential Smoothing and the Holt-Winters 

Forecasting Model were applied. The Exponential Smoothing model effectively reduced short-

term fluctuations by assigning exponentially decreasing weights to past observations, ensuring 

a smoother trend representation. The Holt-Winters method extended this approach by 

incorporating trend and seasonal components, leading to more precise long-term forecasts. The 

forecasted juvenile delinquency rates using the Holt-Winters method covered the period from 

2023 to 2032, offering an extended predictive outlook. 

A comparative analysis was conducted between the ARIMA model and the Holt-Winters 

Forecasting Model using Root Mean Squared Error (RMSE) as a performance metric. The 

RMSE values for both models indicated that the Holt-Winters Forecasting Model (RMSE = 

5443.08) outperformed the ARIMA model (RMSE = 6093.8429) in terms of predictive 

accuracy. The lower RMSE value of the Holt-Winters model signifies its superior ability to 

capture underlying patterns in juvenile delinquency trends. 

Key Findings: 

1. The juvenile delinquency rate data exhibited non-stationarity, which was addressed 

through differencing techniques. 
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2. The ARIMA model was effective in short-term forecasting, with the ARIMA(4,1,5) 

model identified as the best fit. 

3. Linear regression provided insights into the overall trend but was limited in 

capturing complex variations in delinquency rates. 

4. The Holt-Winters Forecasting Model effectively captured both trend and seasonal 

variations, resulting in more accurate long-term forecasts. 

5. The comparative RMSE analysis confirmed that the Holt-Winters model 

outperformed the ARIMA model, making it the preferred choice for forecasting 

juvenile delinquency rates. 

Implications and Future Scope: The findings of this study have significant implications for 

policymakers, law enforcement agencies, and social organizations aiming to mitigate juvenile 

delinquency. The use of advanced forecasting techniques can aid in formulating effective 

intervention strategies by predicting future delinquency trends and enabling proactive 

measures. 

Future research could focus on incorporating additional socio-economic variables, such as 

education levels, unemployment rates, and family structures, to improve the predictive 

capabilities of the models. Additionally, machine learning techniques like Long Short-Term 

Memory (LSTM) networks and hybrid models could be explored for further enhancements in 

forecasting accuracy. 

Overall, this study provides a robust framework for understanding and predicting juvenile 

delinquency trends in India, contributing valuable insights for effective policy formulation and 

crime prevention strategies. 
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