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ABSTRACT 

 

Stock prices are an essential indicator of a company’s financial health and market 

performance. They fluctuate based on various factors, including company earnings, 

economic conditions, and investor sentiment. Forecasting Stock price is a critical 

component in financial decision-making, enabling investors to anticipate future trends 

and optimize their investment strategies. This project concentrates on time series 

analysis in light of forecasting the future average stock price of Ford Motor Company 

over the period of 1972-2024 using statistical methods, ARIMA and Holt-Winter 

Exponential Smoothing, in particular. The objective of the project was to analyse the 

data for the time period of 1972-2024, forecast the production for 2025-2028 and 

compare findings made with the help of ARIMA and Holt Winter Exponential 

Smoothing. ARIMA and Holt-Winter Exponential Smoothing were necessary for the 

project to analyse the data, understand trends and patterns in the data. To begin with, 

ARIMA and Holt-Winter Exponential Smoothing will be described from the theoretical 

perspective and then each method will be applied to the data. In the end, the analysis 

will be compared to one another.  
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CHAPTER 1 

                                INTRODUCTION 

 

Stock price prediction plays a crucial role in the financial sector, providing investors, 

traders, and policymakers with valuable insights into market trends and potential 

investment opportunities (Faris, 2023). The ability to forecast stock price movements 

enables investors to make informed decisions, manage risks, and optimize their 

portfolios for better returns. Over the years, various methods have been explored to 

analyse stock price movements, including fundamental analysis, technical analysis, and 

machine learning-based forecasting techniques (Nti et al., 2020). These approaches 

allow researchers to identify patterns, assess market volatility, and develop predictive 

models that enhance investment strategies. Given the complexities of stock market 

dynamics, understanding historical price movements is essential for improving 

forecasting accuracy and minimizing financial risks (Edwards et al.,2018). 

 

Ford Motor Company, one of the leading automobile manufacturers, has experienced 

fluctuations in its stock prices due to various macroeconomic and industry-specific 

factors (Vychytilová et al., 2019). Factors such as changes in consumer demand, 

technological advancements, economic conditions, and global trade policies 

significantly influence the company's stock performance. Additionally, market 

inefficiencies and investor sentiment play a crucial role in stock price movements 

(Agustin, 2019). Analysing historical stock price data of Ford provides an opportunity 

to identify trends, seasonality, and potential anomalies that may impact future stock 

price movements (Epps, 1979). A comprehensive understanding of these patterns helps 

investors and financial analysts to anticipate market shifts and adjust their trading 

strategies accordingly. 

 

This study aims to analyse the stock price dynamics of Ford Motor Company, focusing 

on identifying patterns, trends, and seasonality in its historical stock prices. By 

employing statistical and machine learning techniques such as the Autoregressive 

Integrated Moving Average (ARIMA) model, Linear Regression, and Random Forest, 

this research seeks to develop and evaluate forecasting models for stock price prediction 
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(Nti et al., 2020). ARIMA, a widely used time series model, is effective in capturing 

linear dependencies in stock prices, while machine learning models such as Random 

Forest can capture complex non-linear relationships in data. Comparing these models 

will provide insights into their predictive performance and suitability for stock price 

forecasting (Dash & Sundarka, 2015). 

 

The findings of this study will contribute to a better understanding of stock market 

behaviour by assessing the effectiveness of different forecasting methodologies. By 

leveraging historical data, investors and financial analysts can enhance their decision-

making process and develop more accurate prediction models. Moreover, this research 

will provide valuable insights into the financial stability of Ford Motor Company, 

helping stakeholders make informed investment choices based on data-driven 

forecasting techniques. 

 

1.1 OBJECTIVES 

 

The main objectives of the study are as follows: 

 

1. To perform Exploratory Data Analysis (EDA) on historical average stock price 

data to identify patterns, trends, and seasonality through visualization, time 

series decomposition, and stationarity tests with necessary transformation. 

2. To develop and evaluate predictive models for stock price forecasting by fitting 

ARIMA model to the historical data. 

3. To develop and evaluate predictive models for stock price forecasting by fitting 

Holt’s Winter Exponential Smoothing model to the historical data. 

4. To compare the performance of ARIMA and Holt’s Winter Exponential 

Smoothing models using RMSE and MSE. 
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CHAPTER 2 

REVIEW OF LITERATURE 

 

This chapter presents the findings from related research that analysed various stock 

price datasets and applied different statistical methods, data mining techniques, and 

machine learning algorithms for stock price prediction. 

Epps (1979) analysed short-term stock price co-movements, finding that correlations 

among price changes in common stocks decrease as the measurement interval 

lengthens. The study attributed this phenomenon to non-stationarity in security price 

changes and lagged adjustments in stock prices to relevant information. The findings 

contribute to understanding market microstructure and highlight inefficiencies in 

intraday stock price movements. 

Wang et al. (2014) explored how integrating fundamental and technical analysis can 

improve risk-adjusted returns for investors in Taiwan’s stock market. Using data from 

the Taiwan Economic Journal Database (1991–2009), they examined firm-level 

financial factors such as profitability, operating efficiency, and solvency. The study 

found that incorporating volume-price covariance as a trading signal led to portfolios 

that consistently outperformed the market. These findings support the effectiveness of 

combined investment strategies in achieving superior long-term returns. 

Acharya et al. (2015) investigated the impact of the downgrade of General Motors 

(GM) and Ford to junk status in 2005 on corporate bond markets. Using a novel dataset, 

they documented a widespread sell-off in GM and Ford bonds, leading to significant 

liquidity risk for market-makers. Their findings indicated a substantial increase in co-

movement between credit default swap (CDS) spreads across industries, particularly 

during the downgrade period. The study demonstrated that corporate bond market 

makers’ imbalance towards sales in GM and Ford bonds explained a significant portion 

of this co-movement. These results supported models in which market prices are 

influenced by the limited risk-bearing capacity of financial intermediaries. 

Dash and Sundarka (2015) examined the stationarity of beta in the Indian automotive 

and auto-ancillary sectors to assess the reliability of the Capital Asset Pricing Model 

(CAPM). Analysing eleven stocks over a decade, the study segmented the period into 
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different market regimes—stagnant, growth, boom, depression, and steady phases—

and applied univariate ANCOVA. The results indicated that beta values remained 

relatively stationary across different market regimes, suggesting that systematic risk 

factors in the Indian stock market exhibit stability within the automotive sector. 

Drakopoulou (2016) highlighted the importance of fundamental analysis in daily equity 

trading. The study argued that while technical analysis helps traders identify patterns 

and trends, fundamental analysis provides insights into a stock’s intrinsic value. The 

research advocated for a combined approach, suggesting that traders who integrate both 

methodologies can make more informed investment decisions and achieve better 

portfolio performance. 

Edwards et al. (2018) provided an extensive guide to technical analysis in their book 

Technical Analysis of Stock Trends. The book covers key concepts such as the Dow 

Theory, reversal patterns, consolidation formations, trend channels, and technical 

indicators. It also introduces trading tactics, portfolio diversification strategies, and risk 

management techniques. This comprehensive work reinforces the importance of 

technical analysis in stock trading and provides investors with tools to enhance their 

decision-making processes. 

Agustin (2019) explored the predictive ability of fundamental and technical analysis in 

stock price forecasting. The study focused on companies listed in the LQ45 index from 

2007 to 2016, employing fundamental variables such as Earnings per Share (EPS), 

Dividend Payout Ratio (DPR), and Return on Equity (ROE), alongside technical 

variables including price momentum, positive extreme price increase (D-Up), and 

negative extreme price decline (D-Down). The findings revealed that technical analysis 

produced the highest predictive ability, while an integrated model combining 

fundamental and technical analysis outperformed fundamental analysis alone. This 

suggests that investors can achieve optimal stock returns by incorporating both 

methodologies. 

Vychytilová et al. (2019) investigated macroeconomic factors influencing stock 

volatility in the automotive industry. Using quarterly panel data from 39 automakers 

across 11 countries between 2000 and 2017, they applied a mixed-effect model 

optimized with a genetic algorithm and AIC criterion. Their findings revealed positive 

correlations between stock return volatility and factors such as GDP growth, stock 
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market development, and unemployment, while money supply and industrial 

production index (IPI) exhibited inverse relationships. The study demonstrated that 

macroeconomic factors play a crucial role in explaining stock price fluctuations in the 

automotive sector. 

Nti et al. (2020) conducted a systematic review of stock market prediction 

methodologies using machine learning. Analysing 122 studies published between 2007 

and 2018, they categorized methodologies into technical, fundamental, and hybrid 

approaches. The findings indicated that 66% of studies focused on technical analysis, 

23% on fundamental analysis, and 11% on hybrid approaches. Support vector machines 

and artificial neural networks were the most commonly used machine learning 

algorithms. The study concluded that integrating fundamental and technical indicators 

enhances predictive accuracy in stock market forecasting. 

Faris (2023) examined the financial performance of Ford Motor Company using both 

fundamental and technical analysis. The study covered the period from 2017 to 2021 

and employed financial statement analysis, volatility modelling, and chart visualization. 

It found that in 2020, Ford had the lowest payout gap (0.15) and a weak EBIT margin 

(1.50%), leading investors to execute technical volatility strategies. The research 

emphasized the role of financial indicators in shaping stock valuation and investment 

risk assessment.  
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CHAPTER 3 

MATERIALS AND METHODS 

 

3.1   DATA COLLECTION 

The data for this study was sourced from historical annual average stock price records 

of Ford Motor Company (F) from 1972 to 2024. The dataset used in this study is taken 

from a website called Yahoo Finance.  

The dataset includes annual average stock prices from 1972 to 2024, enabling a 

comprehensive analysis of long-term trends, patterns, and forecasting potential. The 

prices are given in USD ($). 

Below are all the features of the data: 

1. Year: Year refers to the specific year in which the stock price data is recorded.  

2. Annual Average Stock Price: Average Stock Price is the mean price of Ford 

Motor Company’s stock over that entire year. 

 

3.2 METHODOLOGY  

The first step in this study was to carefully examine the dataset to understand the 

historical trends in Ford Motor Company's stock prices. The goal was to analyse past 

stock price movements and predict future prices using time series models.  

To start, exploratory data analysis (EDA) was conducted to identify trends, patterns, 

and seasonality in the data. This helped in understanding how stock prices have changed 

over time. 

Next, two forecasting models were applied: 

1. ARIMA (Auto Regressive Integrated Moving Average) – a widely used 

statistical model for time series forecasting. 

2. Holt-Winters Exponential Smoothing – a method that captures trends and 

seasonality in the data. 
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Finally, the accuracy of both models was compared using Mean Squared Error (MSE) 

and Root Mean Squared Error (RMSE) to determine which model provided the best 

predictions. 

 

3.3 TOOLS FOR ANALYSIS AND FORECASTING  

1. EDA (Exploratory Data Analysis) 

2. ARIMA (Auto regressive Integrated Moving Average)  

3. Holt-Winter's Exponential Smoothening Technique 

 

3.4 TOOLS FOR COMPARISON  

The accuracy of the model is evaluated using Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE).  

1. Mean Absolute Error (MAE)  

MSE is the average of the squared difference between predicted values 

and actual values. The formula for MAE is:  

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛

𝑖=1

𝑛
 

where,  

𝑦𝑖 is the 𝑖𝑡ℎ observed value,  

𝑦̂𝑖 is the corresponding predicted value,  

n is the number of observations.  

 

2. Root Mean Squared Error (RMSE)   

RMSE is calculated by taking the root of mean squared error. The formula for 

RMSE is:  
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𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

𝑛
 

where,  

𝑦𝑖 is the actual value for the 𝑖𝑡ℎ observation,  

𝑦̂𝑖 is the predicted value for the 𝑖𝑡ℎ observation,  

n is the number of observations. 

 

3.5 PYTHON PROGRAMMING LANGUAGE 

Python is the most popular programming language which is known for its 

understandability, adaptability, readability and flexibility. Python is used in many fields 

such as data science, machine learning, web development. 

 

3.6 MICROSOFT EXCEL 

Microsoft Excel is a powerful spreadsheet application developed by Microsoft. It is 

widely used for data organization, analysis, and visualization. It is used to create 

spreadsheets with rows and columns for calculations, create charts and used to perform 

many other operations. 
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CHAPTER 4 

EXPLORATORY DATA ANALYSIS (EDA) 

 

4.1 EXPLORATORY DATA ANALYSIS (EDA)  

It is the initial step of data analysis process, it enables us to know the underlying patterns 

and structure of data. It also enables us to know the relationship between dataset. EDA 

can be used to know the quality of data, also for checking the null values, missing values 

etc. After EDA with the check of null and missing values, further step is to summarize 

and visualize the data in order to know it more. This can involve the computation of 

summary statistics like mean, median, mode and standard deviation etc. Data 

visualization, breaking the data into trend, seasonal and residual also are included in 

this.  

4.2 DESCRIPTIVE STATISTICS  

Descriptive statistics provide description of variability, distribution and central 

tendency of the data set by summarizing mean, median, mode, standard deviation and 

quartiles. Standard deviation and quartiles are measures that help in identifying outliers 

and extreme values of the dataset. Descriptive statistics overall is a comprehensive 

summary of data's key characteristics, which will assist in understanding data more and 

conducting further analysis accurately. 

4.3 TIME SERIES VISUALISATION  

Time series visualization is the graphical display of data observed over consecutive 

time periods. It includes several methods like line plots, seasonal subseries plots, 

autocorrelation plots, histograms, and interactive visualizations. These techniques 

assist analysts in detecting trends, patterns, and outliers in time-dependent data for 

improved comprehension and decision-making. 

4.4 SEASONAL DECOMPOSITION  

When dealing with time series data, one of the primary techniques employed is seasonal 

decomposition. This technique allows the data to be decomposed into three broad 

components: trend, seasonality, and residuals. Through the study of these components, 
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we can more effectively understand how stock prices change over time and choose the 

most appropriate forecasting model. 

Trend: This is the long-term direction of movement in stock prices—whether they are 

generally moving up, down, or remaining the same over time. 

Seasonality: Certain patterns in stock price data recur at fixed intervals, such as daily, 

monthly, or annual fluctuations. For instance, stock prices may exhibit seasonal trends, 

rising during specific periods due to market cycles, earnings reports, or economic 

factors and declining during others. 

Residuals: These are the random fluctuations in the data that cannot be accounted for 

by trend or seasonality. They indicate how well our model fits the real data. 

Knowledge of these elements is important in selecting an appropriate forecasting 

model. It enables us to perform the appropriate transformations, enhance the precision 

of the model, and have more accurate predictions. 

Exploratory data analysis (EDA) also has an important role to play in this activity. It 

enables us to identify missing values, understand trends, and know which forecasting 

models are appropriate for the dataset. 
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CHAPTER 5 

                          TIME SERIES ANALYSIS 

 

Time Series Analysis is a statistical method for analysing and interpreting data points 

gathered or recorded over fixed time intervals. It detects patterns, trends, seasonality, 

and other forms of structure in time-series data to allow for predictions and forecasts of 

future values. A time series describes the association between two variables, one of 

which is time. Mathematically, a time series can be represented as the function relation 

𝑌𝑡 = 𝑓(𝑡), where 𝑌𝑡  denotes the value of the variable being considered at time t. Here 

time can be yearly, monthly, weekly, daily or even hourly typically in equal intervals of 

time. An example of hourly temperature reading, daily sales and monthly production 

constitute time series.  

5.1 COMPONENTS OF TIME SERIES 

There are mainly 4 components in time series they are as follows:  

Secular Trend (𝑻𝒕) : Trend is basically long time change in time series data. It reflects 

clear and fundamental direction of statistical data through passage of time. It is smooth, 

consistent and long run movement. It can be portrayed as increase, reduction or 

constancy over time for a specific portion in a secular trend, likewise the aggregate 

trend may reveal increasing trend, declining trend or stable trend. If there is neither 

increasing nor decreasing then the time series is termed as stationary. For instance, in 

global average temperature data in a time series, the tendency to increase can be 

observed. This trend of increase in temperatures is consistently found over a period of 

time. 

Seasonality (𝑺𝒕) : Seasonal changes are fluctuations that occur in a consistent pattern 

during a particular period, usually within a year or less, and tend to recur in a similar 

fashion year after year. They are caused by factors like climatic conditions, social 

customs, and religious rituals. Seasonal fluctuations are to be measured to know their 

effect on the overall trend. For instance, ice cream sales are usually higher in summer 

and lower in winter. This cycle repeats every year owing to variation in temperature 

and consumer behaviour according to the season. 
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Cyclic variations (𝑪𝒕) : Cyclic fluctuations are periodic movements that can be upward 

or downward movements in the time series data. The duration of this cyclic fluctuations 

is usually more than a year and also these variations are not periodic.  Business cycles 

and cycles operate on Business and Economic series. These cyclic movements go 

through various stages such as prosperity, recession, depression and recovery. At these 

various stages, the time series undergo changes. These alterations are referred to as 

cyclic changes. Series on production of prices, demands etc. experience these cyclic 

changes. 

Irregular fluctuation (𝑰𝒕) : Irregular fluctuations are those fluctuations which are 

resulted due to sudden or accidental occurrences. These fluctuations can be resulted due 

to environmental disasters such as flood, drought etc. or can be due to sudden strikes, 

wars etc. these activities can result in sudden change in the time series data. These 

activities are based on random factors and these fluctuations cannot be forecasted as the 

other elements of time series. 

5.2 MATHEMATICAL MODELS FOR TIME SERIES  

In classical time series analysis, it is assumed that there exist two models commonly 

for the decompositions of a time series into its components. 

Additive Model: According to the additive model the decomposition of time series is 

done on the assumption that the effects of various components are additive or in other 

words,  

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝐶𝑡 + 𝐼𝑡 

Where 𝑌𝑡  is the time series value  

𝑇𝑡  is the trend 

𝑆𝑡 is the seasonal variation  

𝐶𝑡 is the cyclical variation 

𝐼𝑡 is the irregular variation 

In this model 𝑆𝑡, 𝐶𝑡  and 𝐼𝑡 are absolute quantities and can have positive or negative 

values. The model assumes that four components of the time series are independent of 
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each other and none has any effect on the remaining three components. In actual 

practice, this hypothesis does not hold good as these factors affect each other. 

Multiplicative Model: According to the multiplicative model the decomposition of a 

time series is done on the assumption that the effects of the four components of the time 

series are not independent of each other. According to the multiplicative model,  

𝑌𝑡 = 𝑇𝑡 ∗ 𝑆𝑡  ∗ 𝐶𝑡 ∗ 𝐼𝑡 

In this model  𝑇𝑡, 𝑆𝑡, 𝐶𝑡   and  𝐼𝑡 are not absolute amounts as in the case of the additive 

model. There are relative variations and are expressed as rates or indices fluctuating 

above or below unity. The multiplicative model can be expressed in terms of the 

logarithm.  

 𝑙𝑜𝑔𝑌𝑡  = 𝑙𝑜𝑔𝑇𝑡  + 𝑙𝑜𝑔𝑆𝑡 +𝑙𝑜𝑔𝐶𝑡  + 𝑙𝑜𝑔𝐼𝑡 

 

5.3 TIME SERIES MODELLING  

5.3.1 BASIC DEFINITIONS  

1. Stationary Time series  

Stationary time series refers to series of observations where the mean, variance and the 

Autocorrelation remains constant over time. It is a time series data which exhibit a 

stable behaviour without trend and seasonality.  

2. Non-stationary Time series  

Non-stationary time series refers to series of observation where the mean variance and 

the Autocorrelation varies over time. It is a time series data exhibit unstable behaviour 

with trend, seasonality and other patterns. Non-stationary data cannot be used for 

analysis.  

3. Auto Correlation Function (ACF)  

Autocorrelation function in time series is a tool used to measure the correlation between 

a time series and its lagged value at different time intervals. ACF value of 1 or -1 

indicate strong positive or negative autocorrelation. Patterns of ACF give idea about 

seasonality and other random behaviours. Stationarity can be assessed by ACF, ACF 
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plots with lags dying to zero represents stationarity. The autocorrelation function of a 

stationary time series {𝑍𝑡}, 𝜌(𝑘) at lag k is defined as the correlation at lag k between 

𝑍𝑡 and 𝑍𝑡+𝑘 . Thus, the autocorrelation function at lag k is given by,  

𝜌(𝑘) =
𝛾(𝑘)

𝛾(0)
 

Where  𝛾(𝑘) = 𝐶𝑜𝑣(𝑍𝑡 , 𝑍𝑡+𝑘) 

4. Partial Autocorrelation Function (PACF)  

The Partial Autocorrelation Function (PACF) is used to assess the direct link between 

two observations in a time series while taking additional data effect into consideration. 

PACF is used to find the MA parameter of ARIMA model. The partial autocorrelation 

function, like the autocorrelation function, conveys vital information regarding the 

dependence structure of a stationary process. In the context of time series, a large 

portion of the correlation between 𝑍𝑡 and 𝑍𝑡+𝑘  can be due to the correlation these 

variables have with (𝑍𝑡−1, 𝑍𝑡−2, … , 𝑍𝑡−𝑘+1). The partial autocorrelation of lag k can be 

thought of as the partial regression coefficients kk in the representation.  

𝑍𝑡 = ∅𝑘1𝑍𝑡−1+∅𝑘2𝑍𝑡−2 + ⋯ + ∅𝑘𝑘 𝑍𝑡−𝑘+1 

Thus, the partial autocorrelation at lag k, ∅𝑘𝑘 , measures the correlation between 𝑍𝑡and 

𝑍𝑡−𝑘  after adjusting for the effects of (𝑍𝑡−1, 𝑍𝑡−2, ..., 𝑍𝑡−𝑘+1).  

5. Augmented Dickey Fuller Test  

The ADF test belongs to a category of tests called ‘Unit Root Test’, which is the proper 

method for testing the stationarity of a time series. Augmented Dickey-Fuller (ADF) 

test is a common statistical test used to test whether a given time series is stationary or 

not. It is one of the most commonly used statistical tests when it comes to analysing the 

stationary of a series. It tests the following two null and alternate hypotheses:  

         𝐻0: The time series is regarded as non-stationary. 

 𝐻1: The time series is regarded as stationary. 

Now, if the p-value from this test comes out to be less than a particular level (e.g. α = 

0.05) then in such cases the null hypothesis is rejected and concludes that the time series 

is stationary.  
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6. Stationarity  

The ARIMA method is appropriate only for a stationary data series. Stationarity implies 

that the AR coefficients must satisfy certain conditions for an ARIMA model to be 

stationary. There is a reason for requiring stationarity: we could not get useful estimates 

of the parameters of a process otherwise. If p=0, we have either a pure MA model or a 

white noise series. All pure MA models and white noise are stationary, so there are no 

stationarity conditions to check. For an AR (1) or ARMA (1, q) process, the stationary 

requirement is that the absolute value of ∅1 must be less than one: |∅1| < 1.  

For an AR (2) or ARMA (2, q) process, the stationary requirement is a set of three 

conditions: |∅2| < 1, and ∅1− ∅2 < 1. 

7. Invertibility  

There is another condition that ARIMA models must satisfy called invertibility. This 

requirement implies that the MA coefficients must satisfy certain conditions. There is a 

commonsense reason for invertibility: a non-invertible ARIMA model implies that the 

weights placed on past Z observations do not decline as we move further into the past, 

but commonsense says that larger weights should be attached to more recent 

observations. Invertibility ensures that these results hold.  

If q=0, we have either a pure AR process or a white noise series. All pure AR processes 

and white noise are invertible and no further checks are required. For an MA (1) or 

ARMA (p, 1) process, invertibility requires that the absolute value of 𝜃1 must be less 

than one, |𝜃1|< 1, 𝜃1 + 𝜃2  < 1, and 𝜃1  − 𝜃2  < 1.  

8. Auto Regressive (AR) Process  

A time series {𝑍𝑡} is said to be an autoregressive process of order p, abbreviated as 

AR(p) if it is a weighted linear sum of the past p values plus a random shock so that  

𝑍𝑡 = ∅1𝑍𝑡−1+∅2𝑍𝑡−2 + ⋯ + ∅𝑝𝑍𝑡−𝑝 + 𝜀𝑡 

where {𝜀𝑡} denotes a purely random process with 0 mean and constant variance 𝜎2 . 

Using the backward shift operator B, such that B𝑍𝑡= 𝑍𝑡−1 , the AR (p) model may be 

written more succinctly in the form,  

∅(𝐵)𝑍𝑡 = 𝜀𝑡 
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where ∅(𝐵) = 1 - ∅1𝐵1 - ∅2𝐵2 -...- ∅𝑝𝐵𝑝 is a polynomial in B of order p.  

9. Moving Average (MA) Process  

A time series {𝑍𝑡} is said to be a moving average process of order q, abbreviated as 

MA(q) if it is a weighted linear sum of the last q random shocks so that  

𝑍𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞  

where {𝜀𝑡} denotes a purely random process with 0 mean and constant variance 𝜎2 . 

Using the backward shift operator B the MA (q) model may be written in the form,  

𝑍𝑡 = 𝜃(𝐵)𝜀𝑡 

where 𝜃(𝐵)= 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞  is a polynomial in B of order q. 

10. Auto Regressive Moving Average Process (ARMA) 

Mixed autoregressive moving average model with p auto regressive terms and q moving 

average terms is abbreviated as ARMA (p, q) is given by  

𝑍𝑡 − ∅1𝑍𝑡−1+∅2𝑍𝑡−2 + ⋯ + ∅𝑝𝑍𝑡−𝑝 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞 

Using the backward shift operator B, the ARMA (p, q) can be written in the form,  

𝑍𝑡 − ∅1𝐵𝑍𝑡 − ∅2𝐵2𝑍𝑡 − ⋯ − ∅𝑝𝐵𝑝𝑍𝑡 = 𝜀𝑡 − 𝜃1𝐵𝜀𝑡 − 𝜃2𝐵2𝜀𝑡 − ⋯ − 𝜃𝑞𝐵𝑞𝜀𝑡 

∅(𝐵)𝑍𝑡 = 𝜃(𝐵)𝜀𝑡 

where ∅(𝐵) and 𝜃(𝐵) are polynomial in B of degree of order p and q respectively 

11. Akaike Information Criteria (AIC)  

The Akaike Information Criterion (AIC) is a statistical metric used to evaluate and 

compare models in time series forecasting. It helps identify the best-fitting model by 

balancing goodness of fit and model complexity.  

The AIC is calculated using the formula:  

AIC=2k−2ln(L) 

where k represents the number of parameters in the model, and L is the maximum 

likelihood of the model. A lower AIC value indicates a better model, as it suggests a 

good trade-off between accuracy and simplicity. 
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12. Diagnostic Checking  

In diagnostic checking, we have to assess model adequacy by checking whether the 

model assumptions are satisfied. The basic assumption is that {𝜀𝑡} is white noise. 

Hence, model diagnostic checking is accomplished through careful analysis of residual 

series {𝜀𝑡}. To check whether the errors are normally distributed, one can construct a 

histogram of standardized residuals and compare it with the standard normal 

distribution. The assumption random shocks have a mean of zero and constant variance 

can be checked using a residuals plot. To check whether the residuals are approximately 

white noise, we compute the sample ACF of the residuals to see whether they are all 

statistically insignificant. The iterative nature of the three-stage UBJ (Univariate Box-

Jenkins models) modelling procedure is important. The estimation and diagnostic-

checking stages provide warning signals telling us when, and how, a model should be 

reformulated. It is continued to re-identify, re-estimate, and re-check until a model is 

got that is satisfactory according to several criteria. 

13. Q-Q Plot  

The quantile-quantile (q-q plot) plot is a graphical method for determining if a dataset 

follows a certain probability distribution or whether two samples of data came from the 

same population or not. Q-Q plots are particularly useful for assessing whether a dataset 

is normally distributed or if it follows some other known distribution  

14. Correlogram  

A correlogram is a visual representation of the autocorrelation function (ACF) for a 

time series, plotted against lag values. It shows the degree of correlation between 

observations at different time lags. It helps identify patterns, autocorrelation, 

seasonality, and whether residuals behave like white noise (no significant 

autocorrelations).  

15. Histogram  

A histogram represents the frequency distribution of residuals, KDE (Kernel Density 

Estimate) provides a smoothed estimate of the density, and the standard normal curve 

overlays to compare the residual distribution against a normal distribution.  

16. Ljung-Box Test  
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The Ljung-Box test is a statistical test used to determine whether a time series exhibits 

significant autocorrelation (i.e., whether past values influence future values). It helps 

assess whether the residuals (errors) of a model are independently distributed (white 

noise) or if there is remaining structure that the model has not captured. The test outputs 

a p-value, which is used to draw conclusions: If p-value > 0.05, then the residuals are 

independent (no significant autocorrelation), the model adequately captures the time 

series structure and no significant patterns are left in the residuals. 

 

5.4 HOLT WINTERS EXPONENTIAL SMOOTHING TECHNIQUE  

Holt’s method can be extended to deal with time series which contain both trend and 

seasonal variations. The Holt-Winters method has two versions, additive and 

multiplicative, the use of which depends on the characteristics of the particular time 

series. Let 𝐿𝑡 , 𝑇𝑡 , 𝐼𝑡  denote the local level, trend and seasonal index, respectively at 

time t.  

The interpretation of it depends on whether seasonality is thought to be additive or 

multiplicative. In the additive case I, 𝑦𝑡 − 𝐼𝑡 is the deseasonalized value, while in the 

multiplicative class it is 𝑦𝑡/𝐼𝑡  . The values of the 3 quantities 𝐿𝑡 , 𝑇𝑡 , 𝐼𝑡  all need to be 

estimated and so we need 3 updating equations with three smoothing parameters, say 

∝, γ and δ. As before the smoothing parameters are usually chosen in the range (0, 1). 

The form of the updating equations is again intuitively plausible.  

Suppose the seasonal variation is multiplicative. Then the (recurrence form) equations 

for updating 𝐿𝑡 , 𝑇𝑡 , 𝐼𝑡 when a new observation 𝑦𝑡 becomes available are  

𝐿𝑡 = α (𝑦𝑡 / 𝐼𝑡−𝑠) + (1- α) ( 𝐿𝑡−1+ 𝑇𝑡−1 ) 

𝑇𝑡  = γ ( 𝐿𝑡 – 𝐿𝑡−1 ) + (1- γ) 𝑇𝑡−1 

𝐼𝑡= δ ( 𝑦𝑡  / 𝐿𝑡) + (1- δ) 𝐼𝑡−𝑠 

and the forecasts from time (t) are then,  

𝑦̂𝑡+ℎ = (𝐿𝑡 + ℎ𝑇𝑡)𝐼𝑡−𝑠+ℎ 

for h = 1, 2, …, s 
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where s denotes the seasonal period (For example: s = 4 for quarterly data and 12 for 

monthly data). If the seasonal variation is additive, the equations for updating 𝐿𝑡 , 𝑇𝑡 , 

𝐼𝑡 when a new observation 𝑦𝑡 becomes available are 

  

𝐿𝑡 = α (𝑦𝑡 / 𝐼𝑡−𝑠) + (1- α) ( 𝐿𝑡−1+ 𝑇𝑡−1 ) 

𝑇𝑡  = γ ( 𝐿𝑡 – 𝐿𝑡−1 ) + (1- γ) 𝑇𝑡−1 

𝐼𝑡= δ ( 𝑦𝑡  / 𝐿𝑡) + (1- δ) 𝐼𝑡−𝑠 

and the forecasts from time (t) are then  

𝑦̂𝑡+ℎ = (𝐿𝑡 + ℎ𝑇𝑡)𝐼𝑡−𝑠+ℎ 

for h = 1, 2, ……., s  

For starting values, it seems sensible to set the level component 𝐿𝑂 , equal to the average 

observation in the first year that is, 

𝐿𝑂 = ∑ 𝑦𝑡 

𝑠

𝑡=1

 

where s is the number of seasons. The starting values for the slope component can be 

taken from the average difference per period between the first and second-year 

averages. That is, 

𝑇0 =

∑ 𝑦𝑡 
2𝑠
𝑡=𝑠+1

𝑠
−

∑ 𝑦𝑡 
𝑠
𝑡=1

𝑠
𝑠

 

Finally, the seasonal index starting value can be calculated after allowing for a trend 

adjustment, as follows:  

             𝐼0 = (𝑦𝑘 − (𝑘 − 1)𝑇0)/2   (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒) 

𝐼𝑜 = (𝑦𝑘 − (𝐿𝑂 + (𝑘 − 1)𝑇0)/2)  (𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒) 

 

Where k = 1, 2 ……., s. This will lead to (s) separate values for 𝐼𝑜, which is what is 

required to gain the initial seasonal pattern. 
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      CHAPTER 6 

                           RESULT AND ANALYSIS 

 

This chapter provide a detailed examination and interpretation of the results obtained 

from the study of Ford Motor’s stock price forecasting using time series analysis. 

 

6.1 ARIMA MODEL 

 

6.1.1 TIME SERIES PLOT 

 

The initial step in time series is to draw a time series plot. The fig 6.1 shows the time 

series plot of average annual stock price of Ford company from 1972 to 2024. 

 

 

Fig 6.1 

 

6.1.2 SEASONAL DECOMPOSITION OF DATA 

 

The next step involves performing seasonal decomposition to extract the trend, 

seasonal, and random components from the time series data. The fig 6.2 shown below 

illustrates this decomposition. 
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Fig 6.2 

 

6.1.3 STATIONARITY CHECK USING AUGMENTED DICKEY-

FULLER TEST 

 

To test the stationarity of the time series data using the ADF test, we follow a hypothesis 

testing approach. The null and alternative hypotheses are stated as follows: 

𝐻𝑜: The data is non-stationary. 

𝐻1: The data is stationary. 

RESULT 

ADF Statistic: -1.176211 

p-value: 0.683744 

Critical Values: 

 1%: -3.562878534649522 

 5%: -2.918973284023669 

 10%: -2.597393446745562 
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The p-value is greater than 0.05, so we fail to reject the null hypothesis. The time series 

is non-stationary. 

Therefore, we apply differencing of order n until the time series becomes stationary in 

both cases. For this analysis, we perform differencing with n=1. Afterward, we assess 

the stationarity of the data again using the ADF test. The hypothesis tested is: 

 𝐻𝑜: The data is non-stationary. 

 𝐻1: The data is stationary. 

RESULT 

ADF Statistic: -5.825795 

p-value: 0.000000 

Critical Values: 

 1%: -3.568485864 

 5%: -2.92135992 

 10%: -2.5986616 

The p-value is less than 0.05, so we reject the null hypothesis. The differenced series is 

stationary. Fig 6.3 shows the time series plot after differencing. 

 

 

Fig 6.3 
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6.1.4 AUTOCORRELATION AND PARTIAL 

AUTOCORRELATION   FUNCTION 

 

Next step in Time Series Analysis is to plot and examine Autocorrelation Function 

(ACF) and Partial Autocorrelation Function (PACF). Fig 4.4 shows the ACF &PACF 

Plot. 

 

 

Fig 6.4 

 

6.1.5 ARIMA MODELS AND CORRESPONDING AIC VALUES 

In this step we choose the best model for forecasting the values. It is done by choosing 

one model from all possible models according to Akaike Information Criterion (AIC). 

The model with lowest AIC value is chosen as the best model. Table 4.1 below show 

the possible values of ARIMA model with their AIC value. 
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SL NO Model ARIMA 

(p, d, q) x (P, D, Q) 

AIC value 

1 ARIMA (0, 1, 0) x (0,0,0) 194.96015275911608 

2 ARIMA (0, 1, 1) x (0,0,0) 193.40346060533975 

3 ARIMA (0, 1, 2) x (0,0,0)    189.27547904837502 

4 ARIMA (0, 1, 3) x (0,0,0)    188.4813278395898 

5 ARIMA (1, 1, 0) x (0,0,0)    196.5006232248018 

6 ARIMA (1, 1, 1) x (0,0,0) 193.02251141360537 

7 ARIMA (1, 1, 2) x (0,0,0) 191.22119719866836 

8 ARIMA (1, 1, 3) x (0,0,0) 190.46903561225844 

9 ARIMA (2, 1, 2) x (0,0,0) 193.93719955058677 

10 ARIMA (2, 1, 1) x (0,0,0) 194.10190744046756 

11 ARIMA (2, 1, 2) x (0,0,0)    189.0284981342809 

12 ARIMA (2, 1, 3) x (0,0,0)    186.9793300581165 

13 ARIMA (3, 1, 0) x (0,0,0) 192.35360320076123 

14 ARIMA (3, 1, 1) x (0,0,0) 192.89025133633007 

15 ARIMA (3, 1, 2) x (0,0,0)    190.72296826137227 

16 ARIMA (3, 1, 3) x (0,0,0)    189.9283827654314 

Table 6.1 

Best ARIMA order: (2, 1, 3) x (0,0,0) 

Best AIC: 186.9793300581165 

 ar. L1 ar. L2 ma. L1 ma. L2 ma. L3 

Coefficients -1.1515       -0.9169   1.3588  1.3588 1.9796 

Std error 0.160 0.109 11.771 17.244 33.237 

 

Table 6.2 
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6.1.6 DIAGNOSTIC CHECKING 

Diagnostic checking is a crucial step in confirming the validity, effectiveness, and 

reliability of statistical models. The main objective of this process is to identify and 

select the most appropriate and optimal model for the data. 

6.1.6.1 Ljung-Box Test 

The Ljung-Box test is employed to check for the presence of autocorrelation in the 

residuals of the model. The hypotheses for the test are as follows: 

 Null Hypothesis (H₀): The residuals of the model are independently distributed 

(i.e., there is no significant autocorrelation remaining in the residuals). 

 Alternative Hypothesis (H₁): The residuals of the model are not independently 

distributed (i.e., significant autocorrelation exists in the residuals). 

The results of the Ljung-Box test are used to evaluate whether the residuals exhibit any 

remaining autocorrelation, helping to assess the adequacy of the model. 

Ljung test result 

Test statistic: 6.207767 

P value: 0.797516 

Since p=0.797516 is significantly greater than 0.05, the residuals appear to be 

uncorrelated. This suggests that the fitted ARIMA model effectively captures the 

autocorrelation structure of the data, and the residuals resemble white noise. Therefore, 

the model is considered a god fit. The diagnostic plot is shown below.  

 

        Fig 6.5 (i)         
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From the fig 6.5 (i) the standardized residuals plot is not showing any pattern, just a 

random fluctuation around zero, indicating that the homoscedasticity assumption is fair 

and outliers were well-managed. 

 

 

 

 

 

 

 

 

      Fig 6.5 (ii) 

Figure 6.5 (ii) is the residuals' bell-shaped distribution histogram, which was centred 

around zero, indicated that the residuals' normality condition was satisfied. 

 

                      Fig 6.5 (iii) 

Figure 6.5 (iii) shows that the residuals' strong adherence to a straight line, as 

seen by the Q-Q plot, suggests that they are roughly regularly distributed. 
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Fig 6.5 (iv) 

The figure 6.5 (iv) is the correlogram which shows random fluctuations around zero 

in the autocorrelation function, which supports the assumption of independence of 

residuals. 

 

6.1.7 FORECASTING THE SAMPLE 

Forecasting the sample refers to predicting the actual data points or the training data 

points used in building the model. This allows us to evaluate the model's performance 

on the training dataset, providing insights into how well the model fits the historical 

data. 

The table 6.3 presents the actual values alongside the in-sample forecasted values, 

enabling us to compare the model's predictions against the observed data. 

 

YEAR ACTUAL PRICE PREDICTED PRICE 

2004 7.31 6.564296 

2005 5.43 7.263527 

2006 4.21 5.707786 

2007 4.5 5.137264 

2008 2.81 3.946199 

2009 3.19 2.771276 
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2010 7.15 4.133911 

2011 7.29 7.383057 

2012 6.12 6.819375 

2013 8.78 6.456656 

2014 9.35 8.417856 

2015 9.15 8.485278 

2016 8.21 9.782129 

2017 8.1 7.395219 

2018 7.6 8.127566 

2019 7.21 7.431914 

2020 5.73 7.536698 

2021 11.61 5.521650 

2022 12.36 13.159350 

2023 11.18 10.766022 

2024 11.31 12.243780 

 

Table 6.3 

 

 

                       Fig 6.6 
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6.1.8 FORECASTED FUTURE VALUES 

 

Table 6.4 is the forecasted value of the average annual stock price from 2025 to 2028 

which also contains the LCL and UCL that is the upper control limit and lower control 

limit. 

YEAR FORECASTED 

PRICE 

LOWER 

AVERAGE 

STOCK PRICE 

UPPER 

AVERAGE 

STOCK PRICE 

2025 10.023830 6.991113 13.056546 

2026 9.319722 4.623258 14.016187 

2027 9.916283 4.413936 15.418629 

2028 9.948518 3.621282 16.275678 

Table 6.4 

 

 

               Fig 6.7 
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6.2 HOLT-WINTER EXPONENTIAL SMOOTHING TECHNIQUE 

 

6.2.1 FORECASTING THE SAMPLE 

 

The table 6.5 presents the actual values alongside the in-sample forecasted values, 

enabling us to compare the model's predictions against the observed data. 

 

YEAR ACTUAL PRICE PREDICTED PRICE 

2004 7.31 5.773626 

2005 5.43 7.205005 

2006 4.21 5.867990 

2007 4.5 3.992998 

2008 2.81 4.902717 

2009 3.19 3.283626 

2010 7.15 3.085005 

2011 7.29 7.587990 

2012 6.12 7.072998 

2013 8.78 6.522717 

2014 9.35 9.253626 

2015 9.15 9.245005 

2016 8.21 9.587990 

2017 8.1 7.992998 

2018 7.6 8.502717 

2019 7.21 8.073626 

2020 5.73 7.105005 

2021 11.61 6.177990 

2022 12.36 11.392998 

2023 11.18 12.762717 

2024 11.31 11.653626 

                                                                  Table 6.5 
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Fig 6.8 

6.2.2 FORECASTED FUTURE VALUES 

Table 6.6 is the forecasted value of the average annual stock price from 2025 to 2028 

which also contains the LCL and UCL that is the upper control limit and lower control 

limit. 

 

YEAR FORECASTED PRICE LOWER 

AVERAGE 

STOCK PRICE 

UPPER 

AVERAGE 

STOCK PRICE 

2025 10.672342 7.690565 13.654119 

2026 9.432178 6.450401       12.413955 

2027 10.823614 7.841837 13.805391 

2028 9.892735 6.910958 12.874512 

        Table 6.6 
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Fig 6.9 

 

6.3 COMPARISON OF ARIMA AND HOLT-WINTER EXPONENTIAL 

SMOOTHING MODELS 

Table 6.7 is the comparison of the MSE and RMSE values of two models that is the 

ARIMA model and Holt-Winter Exponential Smoothing technique. 

 

 

MODEL 

 

 

MSE 

 

RMSE 

ARIMA MODEL 0.354274 0.595209 

HOLT-WINTER 

EXPONENTIAL 

SMOOTHING 

2.314398 1.521315 

Table 6.7 
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 CHAPTER 7 

CONCLUSION 

 

 

This study analysed the historical stock price data of Ford Motor Company using time 

series forecasting models, specifically ARIMA and Exponential Smoothing. The 

primary objective was to identify trends, patterns, and predict future stock prices based 

on historical data. By evaluating multiple ARIMA models, the best-performing model 

was selected based on the Akaike Information Criterion (AIC). The ARIMA (2,1,3) 

model was identified as the most suitable, having the lowest AIC value of 186.9793. To 

ensure the reliability of the model, diagnostic tests such as the Ljung-Box test and 

residual analysis were conducted. The results confirmed that the residuals were 

independently distributed, resembling white noise, indicating a good model fit.   

 

Exponential Smoothing was also employed as an alternative forecasting technique. To 

compare the effectiveness of both models, performance was evaluated using Mean 

Squared Error (MSE) and Root Mean Squared Error (RMSE). The results showed that 

the ARIMA model achieved an MSE of 0.354274 and RMSE of 0.595209, whereas the 

Exponential Smoothing model had an MSE of 2.314398 and RMSE of 1.521315. These 

findings suggest that ARIMA provided slightly better predictive accuracy than 

Exponential Smoothing.   

 

The forecasted stock prices for 2025 to 2028 were generated along with confidence 

intervals, ensuring an understanding of possible fluctuations in stock price trends. 

While both models demonstrated reasonable accuracy, the ARIMA model was preferred 

due to its better performance. However, Exponential Smoothing remains a viable 

alternative, especially for capturing short-term trends.   

 

In conclusion, the ARIMA model is a more suitable choice for forecasting Ford’s stock 

prices due to its superior performance in capturing patterns and minimizing prediction 

errors. Future research could explore more advanced machine learning models or 

hybrid approaches to further enhance forecasting accuracy. 
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