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ABSTRACT

In this study, monthly rubber price data of two different grades of rubber RSS1 and RSS3
of Kottavam from January 2010 to December 2023 are analyzed and used for forecasting
future rubber price value. Two time series model were deployed to forecast future monthly
rubber price data for grades RSS1 and RSS3 of Kottayam. SARIMA and Holt-Winter's
Exponential Smoothing were used to forecast the prices from January 2024 — December
2025. Comparison of these models for both grades were done using matrices like RMSE

and MAE. Holt-Winter's model was selected as the best model for both grades RSS1 and
RSS3.
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CHAPTER 1

INTRODUCTION
1.1 NATURAL RUBBER RATE

Several plant species form natural rubber, but economic considerations and quality control limit
its commercial source to just one species, Hevea brasiliensis. Indigenous to the Amazon region,
it has been introduced since the late 19th century to tropical areas of Asia and Africa. It is
regarded as one of the greatest and most successful plant introductions in history, resulting in
plantations of more than 9.3 million hectares globally, 95% of which are in Asia. The rubber
tree has a lifespan of more than a century, but its economic life in plantations is generally 32
years—consisting of a 7-year immature period and a 25-year productive period. Commercial
production of rubber in India began in 1902.

India is the fourth largest producer of natural rubber in the world. Kerala is the largest producer
of natural rubber in India. Kerala accounts for 78% of the area and 90% of total rubber produced
in the country (George & Chandrashekar, 2014). It was introduced to tropical Asia and Africa
by the efforts of the British Government during the later part of 19th century (Kohjiya, 2015).
An analysis of rubber production and consumption from 2005-06 to 2020-21 shows a decline
in production growth, raising concerns for stakeholders. Meanwhile, rubber consumption
increased from 801,110 tonnes in 2005-06 to 1,096,410 tonnes in 2020-21 (Vasagan &
Chakraborty, 2021). Activities to widen the genetic pool of the rubber tree using breeding and
biotechnology, including molecular biology and micropropagation, are meant to improve
productivity and sustainability. Alternative sources such as guayule and Russian dandelion are
being considered (Venkatachalam et.al., 2013). India's natural rubber production fluctuated
despite area expansion, mainly due to declining productivity, especially in Kerala, which
dominates cultivation. Tripura and Karnataka saw positive growth, while other states expanded
primarily in area. Declining productivity was linked to adverse climate and farmers pausing
tapping during price drops. Kerala’s trends significantly impacted national figures, as it
accounted for 78% of cultivated land. A minimum support price policy could help stabilize
production (Nithin & Mahajanashetti, 2017).

Rubber latex is critical throughout industries because it is elastic, resilient,  and water-
resistant. It is used everywhere in medical gloves, car tires, industrial adhesives, and household
products such as mattresses and balloons. Volatility in rubber latex prices affects production
costs and market stability, with industries that depend on it affected. Excessive volatility
impacts supply chains and investment, and maintaining price stability is important for long-
term growth. Understanding price fluctuations helps businesses and policymakers manage
risks, ensuring steady supply and economic stability. Un-stability in the price of rubber
is caused by international demand-supply imbalances, hedge funds, currency volatilities,
and crude prices. The Cuddy Della Valle Index reported increasing instability at Kottayam and
Bangkok markets (11% & 14% for 2005-08 versus 13% & 20% for 2009-12). There is
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increased volatility in global markets, led by crude oil and synthetic rubber prices, while the
Price Stabilization Fund (2003) stabilized domestic prices (Anuja et.al., 2013).

Price forecasting of rubber is important because the  marketis  volatile, and prices  are
affected by world demand, oil prices, exchange rates, and speculation. Precise price forecasts
enable producers and manufacturers to plan production, control costs, and reduce risks.
Policymakers use forecasts to formulate stabilizing policies, and investors use them for
making informed investment decisions. Better forecasting makes the market more efficient,
provides stability to the supply chain, and facilitates sustainable growth in the rubber sector.
One of the recommended model for forecasting rubber rates is Holt-Winter’s exponential
Smoothing method (Chawla & Jha, 2009). Another reliable method to forecast the prices is
ARIMA model (Sukiyono et al., 2019) (Mathew & Murugesan, 2020).

‘Forecasting Rubber Prices of Kottayam using SARIMA And Holt-Winter’s Exponential
Smoothing Method’ a research on forecasting rubber price for two grades of rubber RSS1 and
RSS3 utilized Holt-Winters and SARIMA models. Due to the price volatility of rubber based
on global dynamics, precise forecasting benefits producers and traders. Holt-
Winters identified short-term trends, while SARIMA described long-term behaviors more
effectively. Accurate forecasts facilitate price risk management and market stability. The
comparison of the two models is also done. The data was collected from website of Rubber
Board Ministry of Commerce, and Industry. The dataset comprises of monthly rubber prices(in
Indian Rupees) of two different grades of rubber RSS1 and RSS3 from January 2010 to
December 2023.

1.2 OBJECTIVES

The main objectives of this study are:
1. To forecast the rubber rate using Seasonal ARIMA model.
2. To forecast the rubber rate using the Holt-Winter’s Exponential Smoothing method.

3. To compare the accuracy between forecast models Seasonal ARIMA and Holt’s
Exponential Smoothing method
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CHAPTER 2
LITERATURE REVIEW

This chapter presents an overview of existing literature on predicting rubber prices, with
emphasis on statistical methods. It discusses different methodologies employed for examining
past price trends and determining the most critical influencing factors. On the basis of previous
studies, this review attempts to determine gaps and present effective methods for
enhancing prediction precision.

Chawla and Jha (2009) presented a paper in which an attempt is made to forecast the price of
natural rubber in India by using monthly data for the period from January 1991 to December
2005. The forecasts are obtained up to December 2008 using Linear Trend Equation, Semi-log
Trend Equation, Holt’s Method, Winter’s Method and ARIMA Model. The accuracy of forecast
obtained through various methods is compared with the monthly actual production data of
natural rubber for the period from January 2006 to March 2007, the last month for which actual
price data were available. This period is also used as a hold-out sample. It is found that Winter’s
method gives the best result followed by Holt’s method and Semi-log trend equation. The
MAPE of Winter’s, Holt’s method, and Semi-log trend equation are 8.01 per cent, 8.09 per cent
and 8.12 per cent respectively. It is therefore suggested that Winter’s method could be used for
forecasting the natural rubber prices in India. The forecasting method for prices of natural
rubber in India, as shown in this paper, can be a very useful tool for the Indian rubber industry
professionals and policy makers in India.

Anuja et al. (2013) presented a study about price fluctuations in rubber. Rubber, a perennial
crop with a 10-20 year economic lifespan, is highly affected by price fluctuations, influencing
production and farm income stability. The Cuddy Della Valle Index indicated significant price
instability in domestic and international markets. GARCH (1,1) analysis of RSS 4 rubber prices
(2005-2012) confirmed high volatility. Johansen’s co-integration test revealed long-run market
integration, suggesting price uniformity and improved marketing efficiency.

Venkatachalam et al. (2013) did a study on Hevea brasiliensis, the primary source of natural
rubber, though alternatives like guayule and Russian dandelion show potential. Guayule is
suitable for medical latex, while dandelion rubber is being developed for tires. Other plants,
such as lettuce and fig trees, require further study. An ideal rubber crop would be fast-growing
and widely adaptable. This review examines Hevea cultivation and alternative latex sources for
future production.

George and Chandrashekar (2014) did a study on production of rubber. India, the fourth-largest
natural rubber producer, led global productivity at 1,841 kg/hectare in 2011-12. Kerala
accounts for 90% of India's output. Rubber is marketed through traders and dealers, with
exports peaking at 75,905 tonnes in 2003-04 before declining due to reduced incentives. Major
buyers include China, Malaysia, and Indonesia. This study analyzes Kerala’s rubber production
and marketing trends using CAGR.
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Kohjiya (2015) presented a study on origin and history of rubber plant. The rubber tree (Hevea
brasiliensis) is native to the Amazon Basin in South America. Indigenous people in the region
used its latex for waterproofing. In the 18th century, European explorers introduced rubber to
the world. By the late 19th century, British botanists smuggled rubber seeds to Southeast Asia,
leading to large-scale plantations in countries like Malaysia, Indonesia, and Thailand.

Nithin and Mahajanashetti (2017) presented a study on trend and growth analysis of area,
production and productivity of Natural rubber. Natural rubber is a key industrial material. From
2005-06 to 2014-15, Kerala led cultivation (69.16%), while Tripura saw the highest growth in
area (9.27%) and production (11.55%). Despite a 3.36% annual increase in cultivation,
production declined (-1.19%) due to climate factors and farmers pausing tapping during price
drops.

Sukiyono et al. (2019) presented a study aimed to analyze and select the possible forecasting
methods for monthly natural rubber prices in Indonesia and World Markets. The univariate
model of Double Exponential Smoothing, Decomposition, and ARIMA models are applied to
forecast price data from 2012:1 — 2016:12. The selection of an accurate model is based on the
lowest value of MAPE, MSD, and MAD. ARIMA is the possible methods for world rubber
price forecasting while Double Exponential Smoothing should be applied for predicting
domestic rubber prices because it allows for better predictive performance.

Mathew and Murugesan(2020) presented a study on Indian natural rubber price forecast—An
Autoregressive Integrated Moving Average (ARIMA) approach. The objective of this study
was to forecast the price of natural rubber in India during April 2019 to March 2020 by
employing autoregressive integrated moving average (ARIMA). The monthly pricing data for
the period from April 2008 to March 2018 was used for the study. The analysis was carried out
during the year 2018—19. The prices of RSS4, Latex(60%DRC) and ISNR 20 were taken for
modelling. AIC was used as a selection criterion for the best-fitted model. ARIMA(3,1,2) for
RSS 4, ARIMA (3,1,2) for Latex 60% DRC, and ARIMA (4,1,3) for ISNR20were the most
suited models to forecast the price. The evaluation metrics were R2 , Adjusted R2 , Mean
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Root Mean Square Error
(RMSE). These were employed for validating the forecasting model.

Vasagan and Chakraborty (2021) presented a study on demand and supply trend of rubber in
India. This study analyzes trends in rubber production and consumption in India. Rubber
cultivation expanded to 822,500 hectares, but imports grew faster than production. Data from
the Rubber Board indicate a 2.09% annual increase in cultivated land over 15 years, with
trappable area rising from 447,015 hectares (2005-06) to 692,900 hectares (2020-21). Despite
increasing consumption (801,110 to 1,096,410 tonnes), production declined, leading to a
supply-demand gap. Prices rose by 3.3%, and imports surged by 10.57%. To reduce reliance
on imports, the study recommends boosting domestic production for farmers' benefit.
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CHAPTER 3
MATERIALS AND METHODS

3.1 DATA COLLECTION

The data set used in this study is from website of Rubber Board Ministry of Commerce, and
Industry (http://rubberboard.org.in/ ). The dataset comprises of monthly rubber prices(in Indian
Rupees) of two different grades of rubber RSS1 and RSS3 from January 2010 to December
2023. The dataset consist of ‘Date’ , ‘Price of RSS1’ (in Indian Rupees) and ‘Price of RSS3’
(in Indian Rupees)

3.2 METHODOLOGY

The first crucial step in the analysis was a detailed examination of the data. This includes
outlining the data collection methods, processing techniques, and analytical models used to
achieve the study's objectives. The objective of this study is to examine the fluctuations in the
prices of both grades of rubber in Kottayam and to predict future prices using statistical
techniques. In the study we analysed the data to understand the characteristics of the dataset
then forecast it using SARIMA and Holt-Winter’s Exponential Smoothing model. The
comparison of the two is done by using MAE and RMSE values.

3.3 TOOLS FOR FORECASTING

1. Seasonal ARIMA (Autoregressive integrated moving average) model.
2. Holt-Winter’s Exponential Smoothing method.

3.4 TOOLS FOR COMPARISON

1. RMSE (Root Mean Square Error)

The formula for RMSE is:
RMSE = /Z(Yi—yl)

N-P
where,

y; 1s the actual value for the 1 th observation
y, is the predicted value for the i th observation

N is the number of observations
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P is the number of parameter estimates, including the constant
2. MAE (Mean Absolute Error)

The formula for MAE is:
1 ~
MAE :; ?=0 |yi - yl|

where,

n is total number of observations
y; is the actual value

), is the predicted value

| vi - ¥,| is the absolute error for each observation

3.5 PYTHON PROGRAMMING LANGUAGE

Python is a versatile and highly sought-after programming language, renowned for its clarity,
versatility, and adaptability. Its wide-ranging applications span multiple domains, including
data science, machine learning, and web development, cementing its position as a leading
language in the industry.
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CHAPTER 4
EXPLORATORY DATA ANALYSIS AND TIME SERIES

4.1 EXPLORATORY DATA ANALYSIS

Exploratory Data Analysis (EDA) is a crucial initial step in data science projects. It involves
examining and visualizing data to identify key features, detect patterns, and explore
relationships between different variables. EDA can also be used to understand the quality of
the data ,check null values, missing values etc.

4.1.1 Descriptive Statistics

Descriptive statistics summarize the central tendency, distribution, and variability of a dataset
by computing measures like the quartiles, mean, median, mode, standard deviation, etc.
Measures such as quartiles and standard deviation identify outliers and extreme values in the
dataset. Descriptive statistics generally give a complete summary of the important
characteristics of the data, enabling better understanding and enabling further accurate
analysis.

4.1.2 Time Series Plot

A time-series plot, or a time plot, is a form of graph used to present data points that were
gathered in sequence over time. The x-axis in a time-series plot illustrates the time, while the
y-axis illustrates the variable under measurement.

4.1.3 Seasonal Decomposition

The seasonal decomposition method is a powerful method for decomposing time series data
into its basic components: trend, season, and residuals. This breakdown allows us to detect
seasonality, identify whether the dataset displays regular, recurring patterns that are predictable
over a fixed interval and identify the trend. By knowing the trend and seasonality, we are able
to choose the appropriate model and increase forecasting accuracy.

The three elements of seasonal decomposition are:

1. Trend: The long-term rise or fall in the data.

2. Seasonal: Routine, predictable patterns which repeat over a fixed interval.
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3. Residual: The difference between the actual value and the forecast value, reflecting how well
the data conforms to the model.

In total, exploratory data analysis (EDA) is an essential step towards understanding the data,
finding missing or null values, and coming to understand the right models for precise
forecasting.

4.2 TIME SERIES

A time series is a sequence of data points recorded at successive, equally spaced intervals over
time, making it a series of discrete-time observations.

4.2.1 TIME SERIES ANALYSIS

A method of analyzing a series of data points collected over time is referred to as time series
analysis. Data points in time series analysis are measured at regular intervals over a fixed time
frame, not at random. But conducting this type of research takes more than collecting data over
time. The capability of analyzing how factors over time is what separates time series data from
any other data. Alternatively, time is a significant element as it appears to influence the way
the information alters as it gathers and the end result is attained. It offers a source of additional
data and some criteria between the information.

To ensure consistency and reliability, time series analysis most likely requires a

huge number of data points. A huge data set makes your analysis able to filter out irregular data
and have a representative sample size.

The underlying pattern and structure of a data is embodied by the components of time series.
The prominent components of time series are:

1) Secular Trend : Trend is the general direction of data over the long term, i.e., whether it
rises, falls, or stays constant. A time series with no trend of increasing or decreasing is
stationary in the mean.

2) Seasonal Variations : Seasonal fluctuations in a time series are brought about by rhythmic
forces that act periodically over a 12-month period, according to a given pattern every year.
Climate, weather, local customs, and customary practices are typical items that bring about
seasonal fluctuations. Measuring seasonal fluctuations is primarily aimed at isolating them
from the trend and assessing their effect.

3) Cyclical Variations : Cyclical variations are persistent rising or falling patterns of a time

series that exceed a year and occur with irregular time intervals. Such variations occur very
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frequently in economic statistics and have durations between 5 and 12 years, or even longer.
Cyclical variations differ from seasonal variations since they are not periodic, but rather the
length varies with the business or industry under analysis.

4) Irregular Fluctuations : Irregular variations are unexpected, short-term movements in a time
series with no regular pattern. Also referred to as residual variations, they are the leftover
random fluctuations once trend, cyclical, and seasonal variations are eliminated. Such
variations are frequently the result of unexpected events like natural disasters, wars, or
economic shocks.

4.2.2 MATHEMATICAL MODEL

These are the two models we commonly prefer for the decomposition of a time series into its
four components. The objective is to estimate the four types of variations and separate them so
that their relative effect on the overall behavior of the time series can be demonstrated.

1) Additive Model : Based on the additive model the time series decomposition is
performed on the assumption that the impact of different components is additive or
in other words,

Yt= Tt+St+Ct+It

Where Y is value of time series and T;, S; C: and I represents trend, seasonal
variations, cyclical variations and irregular variations respectively. S;, C; and [; are
absolute values in this model and may be positive or negative. The model postulates
that four components of the time series are independent of one another and none has
any influence on the other three components. In real practice, this hypothesis does not
hold true as these factors influence one another.

2) Multiplicative Model : The multiplicative model breaks down a time series into four
elements (trend, seasonality, cycle, and irregularity) with the underlying assumption
that their impacts are dependent on one another. The model is given by:

Y, = T, XS, X C; X I,

where Ty, S¢, Crand I; are relative changes, i.e., rates or indices, and not absolute values.
The model can be converted with the help of logarithms to facilitate calculations.
logY, = logT; + logS; + logC; + logl,
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4.2.3 TIME SERIES MODELING : BASIC DEFINITIONS

1) Autocorrelation Function (ACF) :

The Autocorrelation function (ACF) of a stationary time series {Z:} quantifies the correlation
between Z; and its k- step ahead value, Zw«. The ACF at lag k, i.e., p(k), is given by:

70
y(0)

where y (k) is the covariance of Z and Z, and y(0) is the variance of Z; .

p(k)

2) Partial Autocorrelation Function (PACF) :

The partial autocorrelation function (PACF) yields information about the structure of
dependence in a stationary time series process. In contrast to the autocorrelation function, the
PACEF controls for the impact of intermediate lags, quantifying the correlation between X and
X+ after accounting for the effect of Xi.1, Xi-2,. .., Xek+1.

The partial autocorrelation at lag k, @k, is the correlation between X and Xk controlling for
the influence of prior terms. It is equivalent to the partial regression coefficient in the
following equation:

Xt = Qp1Xi—1 + QpaXpp + o+ Qi X + &

3) Autoregressive (AR) process
An Autoregressive process of order p, AR(p), is a time series { X; } that can be represented as:
Xe = @1 X1+ QX+ + QX + &
where:

@1, @2,..., Py, are parameters, &, is a purely random process with 0 mean and constant variance

02

4) Moving Average (MA) process

A time series { X; } is said to be a moving average process of order g, abbreviated as MA(q) if
it is a weighted linear sum of the last q random shocks,

Xe= & — 0161 — 05— — 0564
where {&,} denotes a purely random process with mean 0 and constant variance c°.

5) Stationarity
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The ARIMA process needs a stationary series of data. Stationarity guarantees that AR
coefficients satisfy certain conditions, making useful parameter estimates possible.

Conditions for stationarity differ by model:

1)White noise series and pure MA models are always stationary.
11)AR(1) and ARMA(1,q) models need |¢i| < 1.

111)AR(2) and ARMA(2,q) models need: |@2| <1, o1- 2<1, o1+ ¢2< 1

These assumptions guarantee that ARIMA is stationary and can make accurate predictions.

6) Invertibility

ARIMA models also need to meet the condition of invertibility, which provides that the
weights given to the past  observations fallas the observations get older.  Invertibility
is required because it is desirable to assign heavier weights to current observations.

The invertibility conditions differ by model:

1)White noise series and pure AR processes are always invertible.
i))MA(1) and ARMA(p,1) need [61] < 1.

111)MA(2) and ARMA(p,2) need: 62| < 1,01 +02<1,0;-0<1.

These conditions guarantee that the ARIMA model is invertible and yields meaningful results.

7) ARMA process

Mixed Autoregressive moving average model with p autoregressive terms and q moving
average terms is abbreviated as ARMA(p, q) is given by,

Xe = @1 Xt 1+ @2Xe 2+ + @pXep = & — 0161 — Or& 5 — - — 0584

Using the backward shift operator B, the ARMA(p, q) can be written in the form,

Xt - (‘plBXt + (.szZXt + b + ('ppoXt - gt - QlBgt - QZBZSI‘,' —_ Bqugt

¢(B)X; = 6(B)e,

where @(B) and 6(B) are the polynomial in B of degree q and p.

8) ARIMA and SARIMA
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In reality, most time series are non-stationary so it is not appropriate to use stationary AR,
MA or ARMA processes directly. One of the standard ways of dealing with non-stationary
series is by differencing the data to make them stationary. The first difference is computed as:

Zy—Zi1 =1 —-B)Z,

Further differencing can be applied to obtain second differences, and so on. The d th difference
is expressed as:

(1-B)Z,

When a time series is differenced d times before fitting an ARMA(p, q) model, the resulting
model for the original (un-differenced) series is called an ARIMA(p, d, q) model, where ‘I’
stands for Integrated, and d represents the number of differences applied.
Algebraically, an ARIMA(p, d, q) model is represented as:

¢(B)(1 — B)Z, = 8(B)e;

where {g,} is a purely random process with mean zero and constant variance ¢>. Apart from
autoregressive (AR) and moving average (MA) terms, ARIMA models can also have a
constant.

Seasonality in a time series means there are patterns which recur every s periods and where
s is the number of periods until the pattern recurs. Monthly data would have s=12, for instance.

In a seasonal ARIMA model, seasonal AR and MA terms forecast X; based on data values and
past time-point errors with multiples of slag. A seasonal ARIMA model combines non-
seasonal and seasonal parts in multiplicative structure and is expressed as ARIMA(p, d, q) x
(P,D,Q)s, where:

(p, d, q) represents the non- seasonal components and
(P, D, Q)s represents the seasonal components

Mathematically, a seasonal ARIMA model is represented as:
d(B5)e(B)(1 - B*)D(1 - B)*X, = 0(B*)8(B)Z,
where, ¢ (B) = 1- ¢1B- ¢2B%-...- ¢, B,
0 (B)=1-0:B- 0,B*-. . .- 04BY
® (B%)=1- ®;BS- ®,B* -.. .- ®,B™
®(B%)=1-0;B%-0,B*-........ - @B

where:

p = order of non-seasonal autoregression (AR)
d = order of non-seasonal differencing
q = order of non-seasonal moving average (MA)
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P = order of seasonal autoregression (SAR)

D = order of seasonal differencing

Q = order of seasonal moving average (SMA)
s = number of periods in a season

The term { Z } represents a purely random process with zero mean and constant variance c°.

9) Akaike information criterion (AIC)

Akaike information criterion (AIC) is a prediction error estimator and, by extension, relative
quality of statistical models for the data at hand. For a set of models for the data, AIC estimates
each model's quality relative to any one of the other models. Accordingly, AIC offers a model
selection method.

AIC = 2k — 2In(L)
10) Diagnostic Checking

Time series diagnostic checking involves residual analysis to check that the model is a good
fit. Residuals should first be randomly looking and not show any patterns when plotted. The
ACF plot must not have any significant correlations, and the Ljung-Box test can verify if
residuals are uncorrelated. Then, normality checking is needed; a histogram or Q-Q plot must
display a roughly normal distribution. Lastly, model performance can be measured with metrics
such as RMSE, MAE and information measures such as AIC or BIC. When diagnostic checks
indicate problems, options for solutions include transformations such as log or differencing,
inclusion of AR/MA terms or changing over to different models.

4.3 FORECASTING

4.3.1 Seasonal ARIMA (Autoregressive Integrated Moving Average)

In a seasonal ARIMA model, seasonal AR and MA terms forecast X; based on data values and
past time-point errors with multiples of slag. A seasonal ARIMA model combines non-
seasonal and seasonal parts in multiplicative structure and is expressed as ARIMA(p, d, q) x
(P,D,Q)s, where:

(p, d, q) represents the non- seasonal components and
(P, D, Q)s represents the seasonal components

Mathematically, a seasonal ARIMA model is represented as:
®(B*)@(B)(1 - B)D(1 — B)?X, = 0(B*)8(B)Z;
where, ¢ (B) = 1- ¢1B- ¢2B? -...- ¢, BP,
0 (B)=1-0:B- 0,B*-. . .- 04BY
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® (BS%) = 1- ®B% - ®,B* -...- ® B

O (B%) = 1- ©B% - ®,B*-...- 9, B®

where:

p = order of non-seasonal autoregression (AR)

d = order of non-seasonal differencing

q = order of non-seasonal moving average (MA)
P = order of seasonal autoregression (SAR)

D = order of seasonal differencing

Q = order of seasonal moving average (SMA)

s = number of periods in a season

The term {Z:} represents a purely random process with zero mean and constant variance o>,

4.3.2 Exponential Smoothing methods

Exponential smoothing techniques are mean methods that have only three inputs: the future
forecast for the latest period (F1), the observed value for that period (y:) and the estimate of the
smoothing constant (o).

Exponential smoothing can easily be extended to handle time series with trends and seasonal
variation. The form to handle a trend with non-seasonal data is most commonly known as
Holt's exponential smoothing, while the form that also deals with seasonal variation is
commonly known as the Holt-Winters method.

4.3.3 Holt-Winter’s Method

Holt's technique can be generalized to handle time series that have both trend and seasonal
fluctuations. Holt-Winters technique comes in two forms, additive and multiplicative, the \
application of which is based on the nature of the given time series. Let L, Ty, I represent the
local level, trend and seasonal index, respectively at time t.

Its interpretation will be based on whether seasonality is assumed to be additive or
multiplicative. In the additive scenario 1, yi-I; is the deseasonalized value, whereas in the
multiplicative category it is y: / I.. The levels of the 3 quantities Li, T;, and I;, all have
to be estimated and so werequire3 wupdating equations with three smoothing
parameters, say &, y and 0. As with the smoothing parameters typically being in the range (0,
1) beforehand. The shape of the updating equations is again intuitively plausible.

Suppose the seasonal variation is multiplicative. Then the (recurrence form) equations for
updating L, Ty, I, when a new observation y; becomes available are
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L, = a (I:'_t ) (1= a) (L +Toy)

Te=vy(Le— L) + (1 =y)T
Iy = §(ve/Le) + (1= 8)1—s
and the forecasts from time (t) are then,
Yern = (Le + AT sy

for h=1,2, ..., s. If the seasonal variation is additive, the equations for updating L, T, I;, when
a new observation y; becomes available are

L= a@e—ILi—s) + (1 —a)(Le—q + Te-q)
Te=y(Le— L) + (L= y)T4

Iy= 60— L)+ (1 —=08)I_

and the forecasts from time (t) are then
Yern = Le + AT + It sy
For starting values, it seems sensible to set the level component L0, equal to the average
observation in the first year 1.e,
S
Lo = YVt

t=1

where s is the number of seasons. The starting values for the slope component can be taken
from the average difference per period between the first and second year averages i.e,

_ Yisr1 Ve YicaVe
To = ( -
s S

)/s

Finally, the seasonal index starting value can be calculated after allowing for a trend
adjustment, as follows:

Vi — (k= 1)T,
2

IO=

Yk — (Lo + (k — )T,
2

10:

Where k= 1,...,s. This will lead to (s) separate values for I,, which is what is required to gain
the initial seasonal pattern.
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4.4 STATISTICAL TESTS

4.4.1 ADF test

The ADF test is a type of test known as 'Unit Root Test', which is the correct way to test the
stationarity of a time series. Augmented Dickey-Fuller (ADF) test is a popular statistical
test that is employed in order to test if a given time series is stationary or not. It is one of the
most popularly employed statistical tests when it comes to testing the stationarity of a series.

It is testing the below two null and alternative hypotheses:
Ho: The time series is considered as non-stationary.
H;i: The time series is considered as stationary.

Now if the p-value ofthis testisless than acertainvalue(saya =  0.05)
then in those situations the null hypothesis is rejected and states that the time series is
stationary.
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CHAPTER 5
RESULTS AND DISCUSSION

This chapter discusses a comparative study of time series modelling and forecasting of
monthly rubber price of grades RSS1 and RSS3 using SARIMA, Holt-Winters Exponential
Smoothing forecasting. The data comprises 168 observations from January 2010 to December
2023.

Descriptive Statistics :

Table 5.1: Descriptive Statistics

RSSI1 RSS3

count 168 count 168

mean 16490.7916 mean 15520.7142
std 2967.4198 std 2984.3710
min 11350.0000 min 9570.0000
25% 14050.2500 25% 13204.0000
50% 16026.5000 50% 14997.0000
75% 18183.0000 75% 17447.7500
max 25805.0000 max 24683.0000

Time Series plot :

RSS1 Time Series RSS3 Time Series

260001 — 5 — rss3
24000

24000 1
22000

22000 1
20000

20000 1
18000
n
i L
18000 1 16000
16000 14000

14000 1 12000

12000 1 10000

2010 2012 2014 2016 2018 2020 022 2004
Date

2010 012 014 2016 2018 2020 i) 04
Date

figure 5.1: Time series plot
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Time Series Decomposition:

To evaluate the trend, seasonality and random components seasonal decomposition is done,
from figure 5.2 and figure 5.3 it is clear that both RSS1 and RSS3 shows seasonality.

RSS1
25000 4

20000 A
15000 -

20000 -

Trend

15000 -+

1000 A

Seasonal
o

Resid
o

=l
—-20004 @ o \ *
2010 2012 2014

T T L] . Al
2016 2018 2020 2022

figure 5.2: Time series decomposition of RSS1

RSS3

20000 4

10000 H

20000 +

Trend

15000 A

Seasonal
]
I

—500

[ ]
2500 ®
o &
NICTHL P S Y- PP E.Y SV Y
S sy ov? g
—2500 ; . = . .
2010 2012 2014 2016 2018 2020

Resid

T
2022

figure 5.3: Time series decomposition of RSS3
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5.1 MODELLING OF RUBBER PRICES OF RSS1 USING
HOLT-WINTER’s MODEL

Holt’s Winters Forecasting Procedure is used to forecast the rubber prices. The parameter
estimates for the model obtained are listed in the table

Table 5.2: Holt-Winter’s model parameters

Parameter Parameter Estimates
Alpha (Level) 0.895
Beta (Trend) 0.071
Gamma (Season) 0.001

Then the equation for the forecast value is given as:
L, =0.895(y; — I;_3) + (1 —0.895)(L;_1 + T;_q1)
T,=0.071(L,—L,_1)+(1—-0.071)T,_4
I, =0.001(y,— L)+ (1—-0.001)I,_,
Yoo = Le+ AT+ Ipyp g
Equation 5.1: Holt- Winter’s Formula
Diagnostic Checking :

Diagnostic checking is a vital step in statistical modelling that ensures the model's accuracy,
reliability, and effectiveness. It assesses the model's precision and helps refine it to achieve

better prediction accuracy.

Normal Q-Q plot of standardized residuals

Ordered Values

-2 -1 o] 1 2
Theoretical quantiles

figure 5.4: Normal Q-Q plot

The figure 5.4 depicts the Q-Q plot, it is clear that the most of the residual values lie on the
straight line, which indicates that residuals are approximately normally distributed.
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1Cc%rrelogram(AutocorreIation Plot)of Residuals

0.75
0.50
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-0.50
-0.75

-1.00

figure 5.5: Autocorrelation plot

The correlogram in figure 5.5 reveals that the autocorrelation at all lags is insignificant and
decays to zero. This indicates that there is no substantial autocorrelation present in the data.

Histogram plus estimated density

. Hist
— KDE
— N(0,1)

0.25 1

0.20 A

0.15 A

0.10 A

0.05 A

0.00 -

figure 5.6: Histogram of Residuals

The figure 5.6 shows that the histogram matches the normal distribution curve, the residuals
are approximately normal.

The diagnostic checking confirms that the fitted Holt-Winters model is statistically sound and
adequate. Therefore, the model is suitable for forecasting monthly rubber prices.

In-sample Forecasting:

The fitted model is used to do In-sample forecasting. In-sample Forecasting done for the year
2023 is given in the below table 5.3
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Table 5.3: In sample forecasted values

Months Actual Predicted Months Actual Predicted
Value Value Value Values

January 15008 16090.815202 | July 17996 17624.859392
February 15275 17047.570368 | August 17040 17403.294683
March 15133 16638.122085 | September 15962 16416.538661
April 15695 16544.581736 | October 16013 15791.246006
May 16456 16511.163645 | November 16162 15521.131111
June 17140 17179.855036 | December 15840 15380.115726

Rubber Prices

Holt-Winters Forecasting with Grid Search Optimization

26000 4

24000 -

22000 -

20000

18000 -

16000 -

14000 4

12000 4

1

= Training Data

—— Actual Test Data
Forecasted Data

=== Forecast Start

M

\//’\«

2010 2012

2014 2016

2018
Date

2020 2022

figure 5.7: Actual vs Predicted values plot

2024

In figure 5.7 the blue line are the training data, green line is the actual testing data and orange
line is the predicted testing data.

Forecasting of Rubber Prices using Holt-Winters model:

Rubber Prices from January 2024 to December 2025 is forecasted using the model.

Table 5.4: Holt-Winter’s forecast of RSS1

Month | Forecaste | LCL UCL Month | Forecaste | LCL UCL

S d Values S d Values

Jan 18070.09 | 12893.75 | 22638.58 | Jan 17354.11 | 12882.15 | 22643.92
2024 | 85 80 34 2025 03 83 76

Feb 17973.63 | 11194.90 | 20939.73 | Feb 17259.10 11185.76 | 20948.62
2024 | 22 68 41 2025 | 69 02 45
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Mar 17942.47 | 10584.28 | 19024.54 | Mar 17226.82 | 10572.39 | 19032.46
2024 | 89 71 10 2025 12 78 73

Apr 18674.53 | 13258.65 | 21753.25 | Apr 17927.19 | 13267.96 | 21769.10
2024 64 84 41 2025 58 86 25

May 19163.83 | 13987.25 | 23510.68 | May 18394.34 | 14005.98 | 23521.83
2024 59 46 42 2025 &3 65 71

Jun 18928.47 | 13025.15 | 22931.35 | Jun 18165.81 | 13011.75 | 22946.17
2024 35 94 71 2025 |31 98 48

Jul 17860.51 | 11246.25 | 20864.56 | Jul 17138.52 | 11235.34 | 20877.34
2024 | 36 31 42 2025 |61 18 06

Aug 17185.33 | 11147.02 | 20014.35 | Aug 16488.28 | 11132.51 | 20025.46
2024 03 45 10 2025 | 83 58 18

Sep 16896.42 | 10475.26 | 19584.02 | Sep 16208.95 | 10463.67 | 19596.54
2024 80 53 45 2025 |93 25 52

Oct 16747.96 | 9975.698 | 19024.74 | Oct 16064.04 | 9986.573 | 19039.98
2024 77 7 10 2025 |17 2 75

Nov 16778.32 | 11783.31 | 18953.65 | Nov 16090.81 | 11776.41 | 18960.94
2024 02 59 41 2025 02 21 23
Dec 17778.55 | 12049.58 | 20147.68 | Dec 17047.53 | 12534.95 | 20154.82
2024 70 46 94 2025 68 19 93

The Table 5.4 is the forecasted values and its LCL and UCL of rubber prices of RSS1 for

January 2024 to December 2025.

26000
24000

22000 A

Rubber Prices
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Holt-Winters Forecasting and Future Predictions
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T
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figure 5.8: Actual, Predicted and Forecasted values

The figure 5.8 is the plot of forecasted values using Holt Winter’s model.

T
2026
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5.2 MODELLING OF RUBBER PRICE OF RSS3 USING HOLT-
WINTER’s MODEL

Holt’s Winters Forecasting Procedure is used to forecast the rubber prices of RSS3. The
parameter estimates for the model obtained are listed in the table 5.5

Table 5.5: Holt-Winter’s model parameters

Parameter Parameter Estimates
Alpha (Level) 0.845
Beta (Trend) 0.069
Gamma (Season) 0.002

Then the equation for the forecast value is given as:
L, =0.845(y; — I;_3) + (1 —0.845)(L;_1 + T;_q)
T,=0.069(L,—L;_4)+(1—-0.069)T,_,
I, =0.002(y,— L) + (1 —-0.002)I,_¢
Yoo = Le+ AT+ Ipyp g

Equation 5.2: Holt- Winter’s Formula

Diagnostic Checking:

Diagnostic checking is a vital step in statistical modelling that ensures the model's accuracy,
reliability, and effectiveness. It assesses the model's precision and helps refine it to achieve

better prediction accuracy.
Normal Q-Q plot of standardized residuals

2
1

o]

Ordered Values
I
[

-2 -1 0 1 2
Theoretical quantiles

figure 5.9: Normal Q-Q plot of residuals

The figure 5.9 depicts the Q-Q plot, it is clear that the most of the residual values lie on the
straight line, which indicates that residuals are approximately normally distributed.
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1Cé%rrelc:ugramU‘kutocorrelation Plot)of Residuals
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figure 5.10: Autocorrelation plot of Residuals- RSS3

The correlogram in figure 5.10 reveals that the autocorrelation at all lags is insignificant and
decays to zero. This indicates that there is no substantial autocorrelation present in the data.

Histogram plus estimated density
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figure 5.11: Histogram of residuals

The figure 5.11 shows that the histogram matches the normal distribution curve, the residuals

are approximately normal.

The diagnostic checking confirms that the fitted Holt-Winters model is statistically sound and
adequate. Therefore, the model is suitable for forecasting monthly rubber prices.

In-sample Forecasting :

The fitted model is used to do In-sample forecasting. In-sample Forecasting done for the year
2023 is given in the below table 5.6
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Table 5.6: In sample forecast values

16000

Months Actual Predicted Months Actual Predicted
Value Value Value Values
January 14308 15727.5764 | July 15616 16729.7945
February 14558 15888.3723 August 15004 16316.6359
March 14700 15891.1116 September 15131 15714.0856
April 15289 16102.2745 October 15413 15363.3154
May 16000 15845.4650 November 15638 15155.7924
June 15732 16294.2394 | December 15376 15178.0221
Holt-Winters Forecasting with Grid Search Optimization _

14000 A

L

12000 4

10000 1

2016 2018 2020 2022 2024

Date

2010 2012 2014

figure 5.12: Actual vs Predicted values plot

In figure 5.12 the blue line are the training data, green line is the actual testing data and orange
line is the predicted testing data.

Forecasting of Rubber Prices using Holt-Winter’s model:

Rubber Prices from January 2024 to December 2025 is forecasted using the model.

Table 5.7: Holt-Winter’s forecast for RSS3

Month | Forecaste | LCL UCL Month | Forecaste | LCL UCL
S d Values S d Values

(Rs) (Rs)
Jan 17097.23 | 12650.54 | 22345.67 | Jan 16494.17 | 12482.15 | 22143.98
2024 | 27 32 89 2025 |22 67 21
Feb 17328.30 | 10987.65 | 20678.90 | Feb 16715.28 | 10785.62 | 20548.75
2024 | 00 43 12 2025 |72 34 67
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Mar 17055.77 | 11345.67 | 19876.54 | Mar 16450.62 | 10172.39 | 18632.46
2024 | 67 89 32 2025 08 56 73

Apr 17542.80 | 12987.65 | 21456.78 | Apr 16918.52 | 12867.94 | 21369.10
2024 32 43 90 2025 13 56 25

May 18015.83 | 13765.43 | 23219.87 | May 17372.81 | 13505.98 | 22121.83
2024 92 21 65 2025 68 65 77

Jun 17574.95 | 12789.01 | 22789.65 | Jun 16945.79 | 12511.75 | 22546.17
2024 08 23 43 2025 |34 98 48

Jul 16929.83 | 11098.76 | 20654.32 | Jul 16321.96 | 10935.34 | 20477.34
2024 93 54 10 2025 |24 18 06

Aug 16555.77 | 10876.54 | 19876.54 | Aug 15959.54 | 10632.51 | 19625.46
2024 | 50 32 32 2025 |52 58 18

Sep 16335.96 | 10234.56 | 19345.67 | Sep 15745.87 | 10063.67 | 19296.54
2024 14 78 &9 2025 | 69 25 52

Oct 16363.76 | 9845.678 | 19845.67 | Oct 15770.89 | 10586.57 | 19639.98
2024 93 9 89 2025 |57 32 75

Nov 16320.67 | 11567.89 | 18765.43 | Nov 15727.57 | 11376.41 | 18560.94
2024 95 01 21 2025 64 21 23
Dec 16489.42 | 11890.12 | 19990.56 | Dec 15888.37 | 12134.95 | 19754.82
2024 81 34 78 2025 23 19 93

The Table 5.7 is the forecasted values and its LCL and UCL of rubber prices of RSS3 for

January 2024 to December 2025.
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figure 5.13 : Actual, Predicted and Forecasted values

The figure 5.13 is the plot of forecasted values using Holt Winter’s model.
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5.3 MODELING AND FORECASTING OF RUBBER PRICES
OF RSS1 USING SARIMA MODEL

The figure 5.1 presents the time series plot of monthly rubber price data, revealing
noticeable seasonality in the data. However, visual inspection alone is insufficient to
determine whether the changes in the mean are statistically significant. To assess this
further, the ACF and PACEF plots are examined, as shown in fig respectively.

Autocorrelation Function (ACF)

= - H'HHH FA b e

0 5 10 15 20 25 30
Partial Autocorrelation Function (PACF)
1.00
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0.50
0.25
0.00 . T T » » ! - * . f .1 b
,,,,,,,,,,, S 2 S Y N TR |
-0.25
-0.50
-0.75
1.00
0 5 10 15 20 25 30

figure 5.14 : ACF and PACF of RSS1

The figure 5.14 indicates that the autocorrelation gradually decreases over time, but
remains significant up to a considerable number of lags. This indicates the presence of
strong autocorrelation and potential non-stationarity in the data. Now the seasonal
index for various seasons can be obtained by ratio to moving average method.

Table 5.8: Seasonal Indices

Month Seasonal Indices
January 0.967588
February 0.994633
March 1.013349
April 1.032182
May 1.031628
June 1.053073
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July 1.064737
August 1.015458
September 0.970568
October 0.957002
November 0.946357
December 0.953433
Now set that, Ho =Data is non—stationary

Hi =Data is stationary

On performing the ADF test we get,
Dickey -Fuller : -2.6930401656524188
p- value : 0.07525038709459231

Since the p- value exceeds 0.05, we fail to reject the null hypothesis, indicating non-stationarity
in the data. To achieve stationarity, we apply seasonal differencing by subtracting each value
from its counterpart 12 periods prior (S=12), yielding the transformed data: xt = xt — xt-12. The
resulting time series plot of the seasonally differenced data of RSS1 is illustrated in the

figure5.15.

RSS1 Differenced Data

—— Diff Data
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figure 5.15 : Differenced data

From the seasonal differenced figure 5.15 it is evident that the seasonal behaviour is removed
from the series. Now again plot the seasonal differenced ACF and PACF.
ACF plot of Seasonally differenced data :
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ACF of Stationary Data
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figure 5.16: ACF of Stationary data

PACEF plot of Seasonally differenced data :
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1.00

0.75 1

0.50 1

0.25 1 }
L J

0.00 L ‘1 ‘
—0.25 A

—0.50 +

—0.75

—1.00

o 1 2 3 a 5
figure 5.17: PACF of Stationary data

Augmented Dickey-Fuller (ADF) Test :

To confirm that the differenced data is stationary, ADF test is done.

Dicky- Fuller : -4.283533020614704

p- value : 0.0004743009851349935

Since p-value is less than 0.05, it is clear that the differenced data is stationary. No more
seasonal differencing is needed. Now D=1 and d=0 . Now we plot ACF and PACF of seasonally
differenced data at seasonal lags to find P and Q (AR and MA order).

ACF of seasonally differenced data at seasonal lags :
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figure 5.18: ACF of Stationary data at Seasonal lags

PACEF of seasonally differenced data at seasonal lags :
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figure 5.19: PACF of Stationary data at Seasonal lags

From the above figures we get that, non-seasonal AR and MA order is maximum p=2,

maximum q=3 and d=0. Similarly we get, seasonal AR and MA order is maximum P=3,
maximum Q=4 and D=1.

Thus the possible time series models and their corresponding AIC statistics for the monthly
rubber price data of RSS1 is given in Table 5.9.
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Table 5.9: ARIMA models and their corresponding AIC values

z
o

ARIMA(p.d,q) x (P,D,Q)

AlIC

Sex I rrEm 00X INL B LN —

ARIMA(0,0,0)(0,1,0)[12]
ARIMA(1,0,0)(1,1,0)[12]
ARIMA(0,0,0)(0,1,0)[12]
ARIMA(1,0,0)(0,1,0)[12]
ARIMA(1,0,0)(2,1,0)[12]
ARIMA(1,0,0)(3,1,0)[12]
ARIMA(1,0,0)(3,1,1)[12]
ARIMA(1,0,0)(2,1,1)[12]
ARIMA(1,0,0)(2,1,2)[12]
ARIMA(0,0,0)(2,1,1)[12]
ARIMA(2,0,0)(2,1,1)[12]
ARIMA(0,0,1)(2,1,1)[12]
ARIMA(0,0,1)(2,1,0)[12]
ARIMA(0,0,1)(3,1,1)[12]
ARIMA(0,0,1)(1,1,0)[12]
ARIMA(0,0,1)(3,1,0)[12]
ARIMA(0,0.1)(2.1.1)[12]

ARIMA(0,0,1)(2,1,0)[12]
ARIMA(0,0,1)(3,1,1)[12]
ARIMA(0,0,1)(1,1,0)[12]

2069.365
2029.511
2067.645
2063.344
2008.914
1999.322
1993.827
1992.300
1996.907
1995.808
1993.736
1991.523
2008.394
1993.166
2028.331
1999.217
1989.535
2006.482
1991.170
2026.489

Thus by evaluating the possible time series models we get that the model ARIMA(0,0, 1) x
(2,1, 1)[12] with Akaike Information Criteria (AIC) value as 1989.535 as the more appropriate

model.

The parameter estimates of model are

Table 5.10
Parameter Coefficient Standard Error | z P> |z
ar.LL1 0.9673 0.029 32.897 0.00
ar.S.L12 -0.1665 0.135 -1.230 0.219
ar.S.L.24 -0.0876 0.065 -1.342 0.179
ma.S.L12 -0.7914 0.170 -4.657 0.000
sigma?2 6.065e+05 9.62e+05 6.306 0.000

The equation for the forecasted value is given as:

(1-0.9673 B)(1—0.1665 B> — 0.0876 B**)(1 — B2)Z, = (1 — 0. 7914 B1?)¢,

Equation 5.3:SARIMA fitted equation
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Diagnostic Checking :

Diagnostic checking is a vital step in statistical modelling that ensures the model's accuracy,
reliability, and effectiveness. It assesses the model's precision and helps refine it to achieve
better prediction accuracy.

figure 5.20 presents a Quantile-Quantile (Q-Q) plot, which compares the distribution of
residuals to a normal distribution. The majority of residual values closely align with the straight
line, suggesting that the residuals are approximately normally distributed.

Normal Q-Q

Sample Quantiles

T T T T T
—2 —1 o 1 2
Theoretical Quantiles

figure 5.20: Q-Q plot of Residuals
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figure 5.21: Correlogram of Residuals

In the figure 5.21 of correlogram most spikes lie within the confidence interval (blue shaded
region), suggesting no significant autocorrelation in residuals.
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figure 5.22: Histogram of Residuals

In the figure 5.22, the histogram aligns reasonably well with the normal curve N(0,1),

suggesting approximate normality of residuals.

Thus the diagnostic checking reveals that the fitted ARIMA (0,0,1) x (2,1,1)[12] model is
statistically adequate. Also, the model satisfies stationary and invertibility requirements. So the
model can be used to forecast the monthly Rubber price data of RSSI1.

In-sample forecast :

The fitted time series model is now utilized for in-sample forecasting, focusing on the last year

of the dataset, specifically January 2023 to December 2023.

Table 5.11: In sample forecast

Months Actual Predicted Months Actual Predicted
Value Value Value Value

January 15008 16016.9671 July 17996 16628.8798
February 15275 16552.3276 August 17040 16013.3611
March 15133 16513.7576 September 15962 15377.4795
April 15695 16525.4214 October 16013 15157.0373
May 16456 16367.9676 November 16162 15194.0329
June 17140 16608.1752 December 15840 15574.2999
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Actual versus Predicted :

The actual versus the predicted values are plotted in fig5.23 and light blue line is the training
data, orange line is the predicted values and dark blue is the test data.

RSS1 Predicted vs Actual

25000

22500

20000 1

17500 1

RSS51

15000 +

12500 4

10000 4

= Training Data

—— Testing Data
Forecast

M

2010

T
2012

T
2014 2016

2018
Date

2020

T T
2022 2024

figure 5.23: Actual vs Predicted Values plot

Forecasting of Rubber prices using SARIMA model :

The prices of rubber of grade RSS1 from January 2024 to December 2025 is forecasted using

the model fitted.
Table 5.12: SARIMA model forecast for RSS1

Month | Forecaste | LCL UCL Month | Forecaste | LCL UCL
S d Values S d Values
Jan 17498.64 | 12450.54 | 22145.67 | Jan 16849.71 | 12345.15 | 21943.98
2024 | 79 32 89 2025 |48 67 21
Feb 17482.00 | 10787.65 | 20478.90 | Feb 16850.08 10685.62 | 20348.75
2024 | 50 43 12 2025 10 34 67
Mar 17332.19 | 11145.67 | 19676.54 | Mar 16745.92 | 10072.39 | 18432.46
2024 11 89 32 2025 73 56 73
Apr 17532.10 | 12787.65 | 21256.78 | Apr 16997.07 | 12767.94 | 21169.10
2024 75 43 90 2025 23 56 25
May 17531.91 | 13565.43 | 23019.87 | May 17003.62 | 13405.98 | 21921.83
2024 02 2 65 2025 64 65 77
Jun 16815.44 | 12589.01 | 22589.65 | Jun 16324.20 | 12411.75 | 22346.17
2024 46 23 43 2025 84 98 48
Jul 16117.20 10998.76 | 20454.32 | Jul 15642.09 | 10835.34 | 20277.34
2024 | 25 54 10 2025 |20 18 06
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Aug 15807.63 | 10676.54 | 19676.54 | Aug 15355.25 | 10532.51 | 19425.46
2024 99 32 32 2025 | 87 58 18

Sep 15686.08 | 10034.56 | 19145.67 | Sep 15308.73 | 10063.67 | 19196.54
2024 57 78 89 2025 |35 25 52

Oct 16031.60 | 9625.678 | 19645.67 | Oct 15662.90 | 10486.57 | 19439.98
2024 22 9 89 2025 |13 32 75

Nov 16365.25 | 11367.89 | 18565.43 | Nov 16016.96 | 11276.41 | 18360.94
2024 74 01 21 2025 71 21 23
Dec 16858.58 | 11690.12 | 19790.56 | Dec 16552.32 | 12034.95 | 19554.82
2024 63 34 78 2025 76 19 93
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figure 5.24: Plot of forecasted values of RSS1

5.4 MODELING AND FORECASTING OF RUBBER PRICES
OF RSS3 USING SARIMA MODEL

The figure 5.1 presents the time series plot of monthly rubber price data, revealing noticeable
seasonality in the data. However, visual inspection alone is insufficient to determine whether
the changes in the mean are statistically significant. To assess this further, the ACF and PACF
plots are examined, as shown in fig respectively.
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Autocorrelation Function (ACF)
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figure 5.25: ACF and PACF of RSS3

The fig 5.25 indicates that the autocorrelation gradually decreases over time, but
remains significant up to a considerable number of lags. This indicates the presence of
strong autocorrelation and potential non-stationarity in the data. Now the seasonal
index for various seasons can be obtained by ratio to moving average method.

Table 5.13: Seasonal Indices

Now set that,

On performing the ADF test we get,

Month Seasonal Indices
January 0.977924
February 0.990382
March 1.004616
April 1.021938
May 1.009572
June 1.024631
July 1.038888
August 1.012122
September 0.987418
October 0.980680
November 0.975853
December 0.975977

Ho =Data is non—stationary

Hi =Data is stationary
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Dickey -Fuller : -2.235191778203874
p- value : 0.19372162813031552

Since the p- value exceeds 0.05, we fail to reject the null hypothesis, indicating non-stationarity
in the data. To achieve stationarity, we apply seasonal differencing by subtracting each value
from its counterpart 12 periods prior (S=12), yielding the transformed data: xt = xt — xt.12. The
resulting time series plot of the seasonally differenced data of RSS3 is illustrated in the
figure5.26.

RSS3 Differenced data
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figure 5.26: Differenced data of RSS3

From the seasonal differenced figure 5.26 it is evident that the seasonal behaviour is removed
from the series. Now again plot the seasonal differenced ACF and PACF.

ACEF plot of Seasonally differenced data :
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figure 5.27: ACF of Stationary data
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PACEF plot of Seasonally differenced data :

PACF of Stationary Data
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figure 5.28: PACF of Stationary data
Augmented Dickey-Fuller (ADF) Test :
To confirm that the differenced data is stationary, ADF test is done.
Dicky- Fuller : -7.0914751951317605
p- value : 4.398830065116639¢-10

Since p-value is less than 0.05, it is clear that the differenced data is stationary. No more
seasonal differencing is needed. Now D=1 and d=0 . Now we plot ACF and PACF of seasonally
differenced data at seasonal lags to find P and Q (AR and MA order).

ACEF of seasonally differenced data at seasonal lags :

100 ACF of Stationary data at seasonal lags
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figure 5.29: ACF of Stationary data at seasonal lags
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PACEF of seasonally differenced data at seasonal lags :

PACF of Stationary data at seasonal lags
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figure 5.30: PACF of Stationary data at Seasonal lags

From the above figures we get that, non-seasonal AR and MA order is maximum p = 2,
maximum q = 3 and d = 0. Similarly we get, seasonal AR and MA order is maximum P = 4,
maximum Q=4 and D = 1.

Thus the possible time series models and their corresponding AIC statistics for the monthly

rubber price data of RSS3.

T
12

T T
24 36

T
48

T
[s]0]

Table 5.14: ARIMA models and their corresponding AIC values

NO. ARIMA(p,d,q) x (P,D,Q) AIC
1 ARIMA(0,0,0)(0,1,0)[12] 2064.691
2 ARIMA(1,0,0)(1,1,0)[12] 2031.964
3 ARIMA(0,0,0)(0,1,0)[12] 2063.013
4 ARIMA(1,0,0)(0,1,0)[12] 2062.335
5 ARIMA(1,0,0)(2,1,0)[12] 2017.469
6 ARIMA(1,0.0)(3.1.0)[12] 1865.821
7 ARIMA(0,0,0)(3,1,0)[12] 1997.351
8 ARIMA(2,0,0)(3,1,0)[12] 1989.252
9 ARIMA(1,0,1)(3,1,0)[12] 2003.017
10 ARIMA(0,0,1)(3,1,0)[12] 2079.293
11 ARIMA(2,0,1)(3,1,0)[12] 2189.359
12 ARIMA(1,0,0)(3,1,0)[12] 1989.356
13 ARIMA(1,0,0)(2,1,0)[12] 2133.654
14 ARIMA(0,0,0)(3,1,0)[12] 1975.482
15 ARIMA(2,0,0)(3,1,0)[12] 2045.687
16 ARIMA(1,0,1)(3,1,0)[12] 1905.367
17 ARIMA(0,0,1)(3,1,0)[12] 1952.147
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18 ARIMA(2,0,1)(3,1,0)[12] 2099.349
19 ARIMA(1,0,0)(3,1,1)[12] 1962.517
20 ARIMA(1,0,0)(2,1,1)[12] 1956.241

Thus by evaluating the possible time series models we get that the model ARIMA(1, 0, 0) x

(3, 1, 0)[12] with Akaike Information Criteria (AIC) value as 1865.821 as the more

appropriate model.

The parameter estimates of model are

Table 5.15: ARIMA(1, 0, 0) x (3, 1, 0)[12] model parameters

Parameter Coefficient Standard Error | z P> |7
ma.L1 0.8489 0.073 11.694 0.000
ar.S.L12 -0.1248 0.113 -1.105 0.269
ar.S.L.24 0.0828 0.121 0.684 0.494
ar.S.L36 -0.0064 0.080 -0.080 0.936
sigma?2 1.841e+06 2.79e+05 6.602 0.000

The equation for the forecasted value is given as:

(1-0.1248 B2 + 0.0828 B?>* — 0.0064 B3%)(1 — B12)Z, = (1 + 0.8489 B)s,

Equation 5.4: SARIMA fitted equation

Diagnostic Checking:

Diagnostic checking is a vital step in statistical modelling that ensures the model's accuracy,
reliability, and effectiveness. It assesses the model's precision and helps refine it to achieve
better prediction accuracy.

Figure 5.31 presents a Quantile-Quantile (Q-Q) plot, which compares the distribution of
residuals to a normal distribution. The majority of residual values closely align with the straight
line, suggesting that the residuals are approximately normally distributed.
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figure 5.31: Q-Q plot of Residuals
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figure 5.32: Correlogram of Residuals

In the figure 5.32 of correlogram most spikes lie within the confidence interval (blue shaded

region), suggesting no significant autocorrelation in residuals.
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figure 5.33: Histogram of Residuals
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In the figure 5.33 , the histogram aligns reasonably well with the normal curve N(0,1),

suggesting approximate normality of residuals.

Thus the diagnostic checking reveals that the fitted ARIMA (0,0,1) x (3,1,0)[12] model is
statistically adequate. Also, the model satisfies stationary and invertibility requirements. So the

model can be used to forecast the monthly Rubber price data of RSS3.

In-sample forecast :

The fitted time series model is now utilized for in-sample forecasting, focusing on the last year

of the dataset, specifically January 2023 to December 2023.

Table 5.16: In sample forecasts

Months Actual Predicted Months Actual Predicted
Value Value Value Value

January 14308 14943.4592 | July 15616 15353.5088
February 14558 15093.5834 | August 15004 15087.3847
March 14700 15077.7452 | September 15131 14705.3299
April 15289 15136.8067 | October 15413 14528.9594
May 16000 14747.8681 | November 15638 14536.4954
June 15732 15054.1140 | December 15376 14745.9669

Actual versus Predicted :

The actual versus the predicted values are plotted in figure 5.34 and light blue line is the training
data, orange line is the predicted values and dark blue is the test data.

RSS3 Predicted vs Actual

25000 —— Training Data
— Testing Data

Forecast
22500

20000

17500 _f/\’\/-\
AV

15000 \/

12500

RSS3

10000

7500

2010 2012 2014 2016 2018 2020 2022 2024
Date

figure 5.34: Actual vs Predicted plot
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Forecasting of Rubber prices using SARIMA model :

The prices of rubber of grade RSS3 from January 2024 to December 2025 is forecasted using

the model fitted.
Table 5.17: SARIMA model forecasts for RSS3

Mont | Forecaste | LCL UCL Mont | Forecaste | LCL UCL
hs d Values hs d Values
Jan 16092.88 | 10548.21 | 19268.01 | Jan 15354.28 | 10482.369 | 19206.74
2024 | 96 58 24 2025 |53 8 32
Feb 16146.52 | 10984.21 | 19035.32 | Feb 15412.73 | 10929.369 | 19006.74
2024 | 79 57 56 2025 | 51 8 32
Mar 15924.67 | 9147.654 | 19243.65 | Mar 15156.17 | 9034.9876 | 19204.12
2024 | 57 2 20 2025 39 34
Apr 16093.82 | 11035.35 | 19987.36 | Apr 15461.94 | 11004.215 | 19958.90
2024 12 71 51 2025 96 7 12
May 16334.53 | 10654.20 | 19872.32 | May 15717.33 | 10604.205 | 19843.87
2024 88 57 97 2025 58 7 65
Jun 15907.13 | 9958.214 | 18832.69 | Jun 15370.85 | 9834.9876 | 18795.87
2024 56 7 45 2025 | 30 65
Jul 15486.88 | 9831.046 | 18624.39 | Jul 14938.60 | 9731.0465 | 18595.87
2024 | 35 5 27 2025 | 67 65
Aug 15148.02 | 9364.852 | 18643.92 | Aug 14657.79 | 9264.8520 | 18604.90
2024 16 0 56 2025 | 40 12
Sep 14829.76 | 9047.365 | 18035.97 | Sep 14538.39 | 8947.3653 | 18006.87
2024 01 3 65 2025 |98 65
Oct 15016.02 | 10584.36 | 18976.25 | Oct 14747.01 | 10534.369 | 18946.25
2024 50 92 48 2025 |95 2 48
Nov 15245.41 | 10684.35 | 19163.68 | Nov 14943.45 | 10634.352 | 19134.68
2024 84 29 42 2025 92 9 42
Dec 15334.12 | 10023.34 | 18354.05 | Dec 15093.58 | 10003.347 | 18325.05
2024 48 73 48 2025 34 3 48
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figure 5.35: Plot of forecasted values of RSS3

5.5 COMPARISON BETWEEN SARIMA AND HOLT-
WINTER’s MODEL

To determine the best model, performance metrices like Mean Absolute Error (MAE)
and Root Mean Square Error is provided for the models

Table 5.18: RMSE and MAE values

SARIMA Model Holt-Winter’s Model
RSS1 MAE 1028.25483167512 902.132895670896
RMSE 1534.368953102475 1052.6545712051168
RSS3 MAE 1069.6584392175 841.373498511357
RMSE 1684.5443951266758 984.7016247779933

Thus for both grades of rubber RSS1 and RSS3, Holt-Winter’s have lower MAE and RMSE
values, so Holt-Winter’s model is a better performer than SARIMA model.
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CONCLUSION

Two time series models were employed to forecast monthly rubber price values of two grades
of rubber RSS1 and RSS3 from January 2024 to December 2025 utilising the historical data of
two grades from January 2010 to December 2023. The time series models used are SARIMA
and Holt-Winter’s exponential smoothing technique. It was concluded that the Holt-Winter’s
model is the best model for both grades of rubber. In case of RSS1, the Holt-Winter’s model
has a low RMSE of 1052.655 and MAE of 902.133 when compared to that of SARIMA which
has RMSE OF 1534.369 and MAE of 1028.254. In case of RSS3, the Holt-Winter’s model has
a low RMSE of 984.702 and MAE of 841.373 when compared to that of SARIMA which has
RMSE OF 1684.544 and MAE of 1069.658. Both models provide effective forecasting
solutions. However, if computational efficiency is a top priority, Holt-Winter's Exponential
Smoothing is suitable for simpler datasets. For datasets with clear statistical properties and
stationarity, SARIMA is a robust choice, but requires careful parameter tuning, which can
be time-consuming.

In conclusion, this study sheds light on the historical trends and patterns in rubber prices,
revealing valuable insights for stakeholders. While this study informs about the past, it also
paves the way for future exploration in the realm of commodity price forecasting, empowering
stakeholders to make informed decisions in an ever-changing market landscape.
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