












 

CONTENTS 

 

1. INTRODUCTION                                                                                     1 

1.1 Natural Rubber Rate                                                                                           1 

1.2 Objectives                                                                                                           2 

 

2. LITERATURE REVIEW                                                                         3 

 

3. MATERIALS AND METHODS                                                              5 

3.1 Data Collection                                                                                                   5 

3.2 Methodology                                                                                                      5 

3.3 Tools for Forecasting                                                                                          5 

3.4 Tools for Analysis                                                                                               5 

3.5 Python Programming Language                                                                         6 

 

4. EXPLORATORY DATA ANALYSIS AND TIME SERIES                  7 

4.1 EDA                                                                                                                    7 

4.1.1 Descriptive Statistics                                                                                    7 

4.1.2 Time Series Plot                                                                                           7 

4.1.3 Seasonal Decomposition                                                                              7 

 

4.2 Time Series                                                                                                         8 

4.2.1 Time Series Analysis                                                                                    8 

4.2.2 Mathematical Model                                                                                    9  

4.2.3 Time Series Modeling: Basic Definitions                                                  10  

 

4.3 Forecasting                                                                                                       13 

4.3.1 SARIMA                                                                                                     13 

4.3.2 Exponential Smoothing Methods                                                               14 

4.3.3 Holt-Winter’s Method                                                                                14 

 

4.4 Statistical Tests                                                                                                 16 

4.4.1 ADF test                                                                                                     16 

 

5. RESULTS AND DISCUSSION                                                              17  

5.1 Modelling of Rubber Prices of RSS1 using  

Holt-Winter’s model                                                                                         19 

5.2 Modelling of Rubber Prices of RSS3 using  

Holt-Winter’s model                                                                                         23 

5.3 Modelling and Forecasting of Rubber Prices of RSS1 using  



SARIMA model                                                                                                27                                                              

5.4 Modelling and Forecasting of Rubber Prices of RSS3 using  

SARIMA model                                                                                                35 

5.5 Comparison between SARIMA and Holt-Winter’s model                               44 

 

CONCLUSION                                                                                        45 

 

REFERENCE                                                                                          46 

 

 



1 
Dept of Mathematics and Statistics, St Teresa’s College (Autonomous) Ernakulam  

 

CHAPTER 1 

INTRODUCTION 

1.1 NATURAL RUBBER RATE 

Several plant species form natural rubber, but economic considerations and quality control limit 

its commercial source to just one species, Hevea brasiliensis. Indigenous to the Amazon region, 

it has been introduced since the late 19th century to tropical areas of Asia and Africa. It is 

regarded as one of the greatest and most successful plant introductions in history, resulting in 

plantations of more than 9.3 million hectares globally, 95% of which are in Asia. The rubber 

tree has a lifespan of more than a century, but its economic life in plantations is generally 32 

years—consisting of a 7-year immature period and a 25-year productive period. Commercial 

production of rubber in India began in 1902. 

India is the fourth largest producer of natural rubber in the world. Kerala is the largest producer 

of natural rubber in India. Kerala accounts for 78% of the area and 90% of total rubber produced 

in the country (George & Chandrashekar, 2014). It was introduced to tropical Asia and Africa 

by the efforts of the British Government during the later part of 19th century (Kohjiya, 2015). 

An analysis of rubber production and consumption from 2005-06 to 2020-21 shows a decline 

in production growth, raising concerns for stakeholders. Meanwhile, rubber consumption 

increased from 801,110 tonnes in 2005-06 to 1,096,410 tonnes in 2020-21 (Vasagan & 

Chakraborty, 2021). Activities to widen the genetic pool of the rubber tree using breeding and 

biotechnology, including molecular biology and micropropagation, are meant to improve 

productivity and sustainability. Alternative sources such as guayule and Russian dandelion are 

being considered (Venkatachalam et.al., 2013). India's natural rubber production fluctuated 

despite area expansion, mainly due to declining productivity, especially in Kerala, which 

dominates cultivation. Tripura and Karnataka saw positive growth, while other states expanded 

primarily in area. Declining productivity was linked to adverse climate and farmers pausing 

tapping during price drops. Kerala’s trends significantly impacted national figures, as it 

accounted for 78% of cultivated land. A minimum support price policy could help stabilize 

production (Nithin & Mahajanashetti, 2017). 

Rubber latex is critical throughout industries because it is elastic, resilient, and water-

resistant. It is used everywhere in medical gloves, car tires, industrial adhesives, and household 

products such as mattresses and balloons. Volatility in rubber latex prices affects production 

costs and market stability, with industries that depend on it affected. Excessive volatility 

impacts supply chains and investment, and maintaining price stability is important for long-

term growth. Understanding price fluctuations helps businesses and policymakers manage 

risks, ensuring steady supply and economic stability. Un-stability in the price of rubber 

is caused by international demand-supply imbalances, hedge funds, currency volatilities, 

and crude prices. The Cuddy Della Valle Index reported increasing instability at Kottayam and 

Bangkok markets (11% & 14% for 2005-08 versus 13% & 20% for 2009-12). There is 
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increased volatility in global markets, led by crude oil and synthetic rubber prices, while the 

Price Stabilization Fund (2003) stabilized domestic prices (Anuja et.al., 2013). 

Price forecasting of rubber is important because the market is volatile, and prices are 

affected by world demand, oil prices, exchange rates, and speculation. Precise price forecasts 

enable producers and manufacturers to plan production, control costs, and reduce risks. 

Policymakers use forecasts to formulate stabilizing policies, and investors use them for 

making informed investment decisions. Better forecasting makes the market more efficient, 

provides stability to the supply chain, and facilitates sustainable growth in the rubber sector. 

One of the recommended model for forecasting rubber rates is Holt-Winter’s exponential 

Smoothing method (Chawla & Jha, 2009). Another reliable method to forecast the prices is 

ARIMA model (Sukiyono et al., 2019) (Mathew & Murugesan, 2020). 

‘Forecasting Rubber Prices of Kottayam using SARIMA And Holt-Winter’s Exponential 

Smoothing Method’ a research on forecasting rubber price for two grades of rubber RSS1 and 

RSS3 utilized Holt-Winters and SARIMA models. Due to the price volatility of rubber based 

on global dynamics, precise forecasting benefits producers and traders. Holt-

Winters identified short-term trends, while SARIMA described long-term behaviors more 

effectively. Accurate forecasts facilitate price risk management and market stability. The 

comparison of the two models is also done. The data was collected from website of Rubber 

Board Ministry of Commerce,  and Industry. The dataset comprises of monthly rubber prices(in 

Indian Rupees) of two different grades of rubber RSS1 and RSS3 from January 2010 to 

December 2023. 

 

1.2 OBJECTIVES 

 

The main objectives of this study are: 

1. To forecast the rubber rate using Seasonal ARIMA model. 

2. To forecast the rubber rate using the Holt-Winter’s Exponential Smoothing method. 

3. To compare the accuracy between forecast models Seasonal ARIMA and Holt’s 

Exponential Smoothing method 
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter presents an overview of existing literature on predicting rubber prices, with 

emphasis on statistical methods. It discusses different methodologies employed for examining 

past price trends and determining the most critical influencing factors. On the basis of previous 

studies, this review attempts to determine gaps and present effective methods for 

enhancing prediction precision. 

Chawla and Jha (2009) presented a paper in which an attempt is made to forecast the price of 

natural rubber in India by using monthly data for the period from January 1991 to December 

2005. The forecasts are obtained up to December 2008 using Linear Trend Equation, Semi-log 

Trend Equation, Holt’s Method, Winter’s Method and ARIMA Model. The accuracy of forecast 

obtained through various methods is compared with the monthly actual production data of 

natural rubber for the period from January 2006 to March 2007, the last month for which actual 

price data were available. This period is also used as a hold-out sample. It is found that Winter’s 

method gives the best result followed by Holt’s method and Semi-log trend equation. The 

MAPE of Winter’s, Holt’s method, and Semi-log trend equation are 8.01 per cent, 8.09 per cent 

and 8.12 per cent respectively. It is therefore suggested that Winter’s method could be used for 

forecasting the natural rubber prices in India. The forecasting method for prices of natural 

rubber in India, as shown in this paper, can be a very useful tool for the Indian rubber industry 

professionals and policy makers in India. 

Anuja et al. (2013) presented a study about price fluctuations in rubber. Rubber, a perennial 

crop with a 10-20 year economic lifespan, is highly affected by price fluctuations, influencing 

production and farm income stability. The Cuddy Della Valle Index indicated significant price 

instability in domestic and international markets. GARCH (1,1) analysis of RSS 4 rubber prices 

(2005–2012) confirmed high volatility. Johansen’s co-integration test revealed long-run market 

integration, suggesting price uniformity and improved marketing efficiency. 

Venkatachalam et al. (2013) did a study on  Hevea brasiliensis, the primary source of natural 

rubber, though alternatives like guayule and Russian dandelion show potential. Guayule is 

suitable for medical latex, while dandelion rubber is being developed for tires. Other plants, 

such as lettuce and fig trees, require further study. An ideal rubber crop would be fast-growing 

and widely adaptable. This review examines Hevea cultivation and alternative latex sources for 

future production. 

George and Chandrashekar (2014) did a study on production of rubber. India, the fourth-largest 

natural rubber producer, led global productivity at 1,841 kg/hectare in 2011-12. Kerala 

accounts for 90% of India's output. Rubber is marketed through traders and dealers, with 

exports peaking at 75,905 tonnes in 2003-04 before declining due to reduced incentives. Major 

buyers include China, Malaysia, and Indonesia. This study analyzes Kerala’s rubber production 

and marketing trends using CAGR. 
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Kohjiya (2015) presented a study on origin and history of rubber plant. The rubber tree (Hevea 

brasiliensis) is native to the Amazon Basin in South America. Indigenous people in the region 

used its latex for waterproofing. In the 18th century, European explorers introduced rubber to 

the world. By the late 19th century, British botanists smuggled rubber seeds to Southeast Asia, 

leading to large-scale plantations in countries like Malaysia, Indonesia, and Thailand. 

Nithin and Mahajanashetti (2017) presented a study on trend and growth analysis of area, 

production and productivity of Natural rubber. Natural rubber is a key industrial material. From 

2005-06 to 2014-15, Kerala led cultivation (69.16%), while Tripura saw the highest growth in 

area (9.27%) and production (11.55%). Despite a 3.36% annual increase in cultivation, 

production declined (-1.19%) due to climate factors and farmers pausing tapping during price 

drops. 

Sukiyono et al. (2019) presented a study aimed to analyze and select the possible forecasting 

methods for monthly natural rubber prices in Indonesia and World Markets. The univariate 

model of Double Exponential Smoothing, Decomposition, and ARIMA models are applied to 

forecast price data from 2012:1 – 2016:12. The selection of an accurate model is based on the 

lowest value of MAPE, MSD, and MAD. ARIMA is the possible methods for world rubber 

price forecasting while Double Exponential Smoothing should be applied for predicting 

domestic rubber prices because it allows for better predictive performance. 

Mathew and Murugesan(2020) presented a study on Indian natural rubber price forecast–An 

Autoregressive Integrated Moving Average (ARIMA) approach. The objective of this study 

was to forecast the price of natural rubber in India during April 2019 to March 2020 by 

employing autoregressive integrated moving average (ARIMA). The monthly pricing data for 

the period from April 2008 to March 2018 was used for the study. The analysis was carried out 

during the year 2018–19. The prices of RSS4, Latex(60%DRC) and ISNR 20  were taken for 

modelling. AIC was used as a selection criterion for the best-fitted model. ARIMA(3,1,2) for 

RSS 4, ARIMA (3,1,2) for Latex 60% DRC, and ARIMA (4,1,3) for ISNR20were the most 

suited models to forecast the price. The evaluation metrics were R2 , Adjusted R2 , Mean 

Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Root Mean Square Error 

(RMSE). These were employed for validating the forecasting model. 

Vasagan and Chakraborty (2021) presented a study on demand and supply trend of rubber in 

India. This study analyzes trends in rubber production and consumption in India. Rubber 

cultivation expanded to 822,500 hectares, but imports grew faster than production. Data from 

the Rubber Board indicate a 2.09% annual increase in cultivated land over 15 years, with 

trappable area rising from 447,015 hectares (2005-06) to 692,900 hectares (2020-21). Despite 

increasing consumption (801,110 to 1,096,410 tonnes), production declined, leading to a 

supply-demand gap. Prices rose by 3.3%, and imports surged by 10.57%. To reduce reliance 

on imports, the study recommends boosting domestic production for farmers' benefit. 

  



5 
Dept of Mathematics and Statistics, St Teresa’s College (Autonomous) Ernakulam  

CHAPTER 3 

MATERIALS AND METHODS 

 

3.1 DATA COLLECTION 

The data set used in this study is from website of Rubber Board Ministry of Commerce,  and 

Industry (http://rubberboard.org.in/ ). The dataset comprises of monthly rubber prices(in Indian 

Rupees) of two different grades of rubber RSS1 and RSS3 from January 2010 to December 

2023. The dataset consist of  ‘Date’ , ‘Price of RSS1’ (in Indian Rupees) and ‘Price of RSS3’ 

(in Indian Rupees)  

 

3.2 METHODOLOGY 

The first crucial step in the analysis was a detailed examination of the data. This includes 

outlining the data collection methods, processing techniques, and analytical models used to 

achieve the study's objectives. The objective of this study is to examine the fluctuations in the 

prices of both grades of rubber in Kottayam and to predict future prices using statistical 

techniques. In the study we analysed the data to understand the characteristics of the dataset 

then forecast it using SARIMA and Holt-Winter’s Exponential Smoothing model. The 

comparison of the two is done by using MAE and RMSE values. 

 

3.3 TOOLS FOR FORECASTING  

1. Seasonal ARIMA (Autoregressive integrated moving average) model. 

2. Holt-Winter’s Exponential Smoothing method. 

 

3.4 TOOLS FOR COMPARISON  

1. RMSE (Root Mean Square Error) 

The formula for RMSE is: 

RMSE = √
∑(𝑦𝑖−𝑦𝑖)̂

𝑁−𝑃
 

where, 

𝑦𝑖 is the actual value for the i th observation 

𝑦𝑖̂ is the predicted value for the i th observation 

N is the number of observations 

http://rubberboard.org.in/
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P is the number of parameter estimates, including the constant 

2. MAE (Mean Absolute Error) 

The formula for MAE is: 

MAE =
1

𝑛
∑ |𝑦𝑖
𝑛
𝑖=0 − 𝑦𝑖̂ | 

where,  

n is total number of observations 

𝑦𝑖 is the actual value 

𝑦𝑖̂ is the predicted value 

| 𝑦𝑖 - 𝑦𝑖̂| is the absolute error for each observation 

 

3.5 PYTHON PROGRAMMING LANGUAGE 

Python is a versatile and highly sought-after programming language, renowned for its clarity, 

versatility, and adaptability. Its wide-ranging applications span multiple domains, including 

data science, machine learning, and web development, cementing its position as a leading 

language in the industry. 
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CHAPTER 4 

EXPLORATORY DATA ANALYSIS AND TIME SERIES 

 

4.1 EXPLORATORY DATA ANALYSIS 

Exploratory Data Analysis (EDA) is a crucial initial step in data science projects. It involves 

examining and visualizing data to identify key features, detect patterns, and explore 

relationships between different variables. EDA can also be used to understand the quality of 

the data ,check null values, missing values etc. 

 

4.1.1 Descriptive Statistics 

Descriptive statistics summarize the central tendency, distribution, and variability of a dataset 

by computing measures like the quartiles, mean, median, mode, standard deviation, etc. 

Measures such as quartiles and standard deviation identify outliers and extreme values in the 

dataset. Descriptive statistics generally give a complete summary of the important 

characteristics of the data, enabling better understanding and enabling further accurate 

analysis. 

 

4.1.2 Time Series Plot 

A time-series plot, or a time plot, is a form of graph used to present data points that were 

gathered in sequence over time. The x-axis in a time-series plot illustrates the time, while the 

y-axis illustrates the variable under measurement. 

 

4.1.3 Seasonal Decomposition 

The seasonal decomposition method is a powerful method for decomposing time series data 

into its basic components: trend, season, and residuals. This breakdown allows us to detect 

seasonality, identify whether the dataset displays regular, recurring patterns that are predictable 

over a fixed interval and identify the trend. By knowing the trend and seasonality, we are able 

to choose the appropriate model and increase forecasting accuracy. 

 

The three elements of seasonal decomposition are: 

 

1. Trend: The long-term rise or fall in the data. 

2. Seasonal: Routine, predictable patterns which repeat over a fixed interval. 
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3. Residual: The difference between the actual value and the forecast value, reflecting how well 

the data conforms to the model. 

 

In total, exploratory data analysis (EDA) is an essential step towards understanding the data, 

finding missing or null values, and coming to understand the right models for precise 

forecasting. 

 

4.2 TIME SERIES 

A time series is a sequence of data points recorded at successive, equally spaced intervals over 

time, making it a series of discrete-time observations. 

 

4.2.1 TIME SERIES ANALYSIS 

A method of analyzing a series of data points collected over time is referred to as time series 

analysis. Data points in time series analysis are measured at regular intervals over a fixed time 

frame, not at random. But conducting this type of research takes more than collecting data over 

time. The capability of analyzing how factors over time is what separates time series data from 

any other data. Alternatively, time is a significant element as it appears to influence the way 

the information alters as it gathers and the end result is attained. It offers a source of additional 

data and some criteria between the information. 

To ensure consistency and reliability, time series analysis most likely requires a 

huge number of data points. A huge data set makes your analysis able to filter out irregular data 

and have a representative sample size. 

The underlying pattern and structure of a data is embodied by the components of time series. 

The prominent components of time series are: 

1) Secular Trend : Trend is the general direction of data over the long term, i.e., whether it 

rises, falls, or stays constant. A time series with no trend of increasing or decreasing is 

stationary in the mean. 

 

2) Seasonal Variations : Seasonal fluctuations in a time series are brought about by rhythmic 

forces that act periodically over a 12-month period, according to a given pattern every year. 

Climate, weather, local customs, and customary practices are typical items that bring about 

seasonal fluctuations. Measuring seasonal fluctuations is primarily aimed at isolating them 

from the trend and assessing their effect. 

3) Cyclical Variations : Cyclical variations are persistent rising or falling patterns of a time 

series that exceed a year and occur with irregular time intervals. Such variations occur very 
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frequently in economic statistics and have durations between 5 and 12 years, or even longer. 

Cyclical variations differ from seasonal variations since they are not periodic, but rather the 

length varies with the business or industry under analysis. 

4) Irregular Fluctuations : Irregular variations are unexpected, short-term movements in a time 

series with no regular pattern. Also referred to as residual variations, they are the leftover 

random fluctuations once trend, cyclical, and seasonal variations are eliminated. Such 

variations are frequently the result of unexpected events like natural disasters, wars, or 

economic shocks. 

 

4.2.2 MATHEMATICAL MODEL 

These are the two models we commonly prefer for the decomposition of a time series into its 

four components. The objective is to estimate the four types of variations and separate them so 

that their relative effect on the overall behavior of the time series can be demonstrated.  

1) Additive Model : Based on the additive model the time series decomposition is 

performed on the assumption that the impact of different components is additive or 

in other words, 

 

𝑌𝑡 =  𝑇𝑡 + 𝑆𝑡 + 𝐶𝑡 + 𝐼𝑡 

 

Where Yt is value of time series and Tt, St, Ct and It represents trend, seasonal 

variations, cyclical variations and irregular variations respectively. St, Ct and  It  are 

absolute values in this model and may be positive or negative. The model postulates 

that four components of the time series are independent of one another and none has 

any influence on the other three components. In real practice, this hypothesis does not 

hold true as these factors influence one another. 

 

2) Multiplicative Model : The multiplicative model breaks down a time series into four 

elements (trend, seasonality, cycle, and irregularity) with the underlying assumption 

that their impacts are dependent on one another. The model is given by: 

 

𝑌𝑡 = 𝑇𝑡 × 𝑆𝑡 × 𝐶𝑡 × 𝐼𝑡 

 

where Tt, St, Ct and It  are relative changes, i.e., rates or indices, and not absolute values. 

The model can be converted with the help of logarithms to facilitate calculations. 

𝑙𝑜𝑔𝑌𝑡 = 𝑙𝑜𝑔𝑇𝑡 + log𝑆𝑡 + 𝑙𝑜𝑔𝐶𝑡 + 𝑙𝑜𝑔𝐼𝑡 
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4.2.3 TIME SERIES MODELING : BASIC DEFINITIONS 

 

1) Autocorrelation Function (ACF) : 

The Autocorrelation function (ACF) of a stationary time series {Zt} quantifies the correlation 

between Zt and its k- step ahead value, Zt+k. The ACF at lag k, i.e., ρ(k), is given by:  

𝜌(𝑘) =
𝛾(𝑘)

𝛾(0)
 

where 𝛾(𝑘) is the covariance of Zt and Zt+k, and 𝛾(0) is the variance of Zt . 

 

2) Partial Autocorrelation Function (PACF) :  

The partial autocorrelation function (PACF) yields information about the structure of 

dependence in a stationary time series process. In contrast to the autocorrelation function, the 

PACF controls for the impact of intermediate lags, quantifying the correlation between Xt and 

Xt+k after accounting for the effect of Xt-1, Xt-2,…, Xt-k+1. 

The partial autocorrelation at lag k, φkk, is the correlation between Xt and Xt-k controlling for 

the influence of prior terms. It is equivalent to the partial regression coefficient in the 

following equation: 

𝑋𝑡 =  φ𝑘1𝑋𝑡−1 + φ𝑘2𝑋𝑡−2 +⋯+φ𝑘𝑘𝑋𝑡−𝑘 + 𝜀𝑡 

 

3) Autoregressive (AR) process 

An Autoregressive process of order p, AR(p), is a time series { Xt } that can be represented as: 

𝑋𝑡 = φ1𝑋𝑡−1 +φ2𝑋𝑡−2 +⋯+φ𝑝𝑋𝑡−𝑝 + 𝜀𝑡 

where: 

φ1, φ2,…, φ𝑝 are parameters, 𝜀𝑡 is a purely random process with 0 mean and constant variance 

σ2 

 

4) Moving Average (MA) process 

A time series { Xt } is said to be a moving average process of order q, abbreviated as MA(q) if 

it is a weighted linear sum of the last q random shocks, 

𝑋𝑡 =  𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −⋯− 𝜃𝑞𝜀𝑡−𝑞  

where {𝜀𝑡} denotes a purely random process with mean 0 and constant variance σ2. 

5) Stationarity 
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The ARIMA process needs a stationary series of data. Stationarity guarantees that AR 

coefficients satisfy certain conditions, making useful parameter estimates possible.  

Conditions for stationarity differ by model:  

i)White noise series and pure MA models are always stationary. 

ii)AR(1) and ARMA(1,q) models need |φ1| < 1. 

iii)AR(2) and ARMA(2,q) models need: |φ2| < 1, φ1 - φ2 < 1, φ1 + φ2 < 1 

These assumptions guarantee that ARIMA is stationary and can make accurate predictions.  

 

6) Invertibility 

ARIMA models also need to meet the condition of invertibility, which provides that the 

weights given to the past observations fall as the observations get older. Invertibility 

is required because it is desirable to assign heavier weights to current observations. 

The invertibility conditions differ by model: 

i)White noise series and pure AR processes are always invertible. 

ii)MA(1) and ARMA(p,1) need |θ1| < 1. 

iii)MA(2) and ARMA(p,2) need: |θ2| < 1, θ1 + θ2 < 1, θ1 - θ2 < 1. 

These conditions guarantee that the ARIMA model is invertible and yields meaningful results. 

 

7) ARMA process 

Mixed Autoregressive moving average model with p autoregressive terms and q moving 

average terms is abbreviated as ARMA(p, q) is given by, 

𝑋𝑡 − φ1𝑋𝑡−1 + φ2𝑋𝑡−2 +⋯+ φ𝑝𝑋𝑡−𝑝 =  𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −⋯− 𝜃𝑞𝜀𝑡−𝑞 

Using the backward shift operator B, the ARMA(p,  q) can be written in the form, 

 

𝑋𝑡 −φ1𝐵𝑋𝑡 + φ2𝐵
2𝑋𝑡 +⋯+φ𝑝𝐵

𝑝𝑋𝑡 =  𝜀𝑡 − 𝜃1𝐵𝜀𝑡 − 𝜃2𝐵
2𝜀𝑡 −⋯− 𝜃𝑞𝐵

𝑞𝜀𝑡 

φ(B)𝑋𝑡 = 𝜃(B)𝜀𝑡 

where φ(B) and 𝜃(B) are the polynomial in B of degree q and p. 

 

8) ARIMA and SARIMA 



12 
Dept of Mathematics and Statistics, St Teresa’s College (Autonomous) Ernakulam  

In reality, most time series are non-stationary so it is not appropriate to use stationary AR, 

MA or ARMA processes directly. One of the standard ways of dealing with non-stationary 

series is by differencing the data to make them stationary. The first difference is computed as: 

𝑍𝑡 − 𝑍𝑡−1 = (1 − 𝐵)𝑍𝑡 

Further differencing can be applied to obtain second differences, and so on. The d th difference 

is expressed as: 

(1 − 𝐵)𝑑𝑍𝑡 

When a time series is differenced d times before fitting an ARMA(p, q) model, the resulting 

model for the original (un-differenced) series is called an ARIMA(p, d, q) model, where ‘I’ 

stands for Integrated, and d represents the number of differences applied. 

Algebraically, an ARIMA(p, d, q) model is represented as: 

ϕ(B)(1 − 𝐵)𝑑𝑍𝑡 = θ(B)𝜀𝑡 

where {𝜀𝑡} is a purely random process with mean zero and constant variance σ2. Apart from 

autoregressive (AR) and moving average (MA) terms, ARIMA models can also have a 

constant. 

Seasonality in a time series means there are patterns which recur every s periods and where 

s is the number of periods until the pattern recurs. Monthly data would have s=12, for instance. 

In a seasonal ARIMA model, seasonal AR and MA terms forecast Xt based on data values and 

past time-point errors with multiples of s lag. A seasonal ARIMA model combines non-

seasonal and seasonal parts in multiplicative structure and is expressed as ARIMA(p, d, q) × 

(P,D,Q)s, where: 

(p, d, q) represents the non- seasonal components and  

(P, D, Q)s represents the seasonal components 

Mathematically, a seasonal ARIMA model is represented as: 

Φ(𝐵𝑠)φ(B)(1 − 𝐵𝑠)𝐷(1 − 𝐵)𝑑𝑋𝑡 =  Θ(𝐵𝑠)θ(B)𝑍𝑡  

where, φ (B) = 1- φ1B- φ2B
2 -…- φp B

p ,  

θ (B) = 1- θ1B- θ2B
2 -. . .- θq B

q  

Φ (BS ) = 1- Φ1B
S - Φ2B

2S -…- Φq B
PS  

Θ (BS ) = 1- Θ1B
S - Θ2B

2S-……..- Θq B
QS  

 

where: 

p = order of non-seasonal autoregression (AR) 

d = order of non-seasonal differencing 

q = order of non-seasonal moving average (MA) 
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P = order of seasonal autoregression (SAR) 

D = order of seasonal differencing 

Q = order of seasonal moving average (SMA) 

s = number of periods in a season 

The term { Zt } represents a purely random process with zero mean and constant variance σ2. 

 

9) Akaike information criterion (AIC) 

Akaike information criterion (AIC) is a prediction error estimator and, by extension, relative 

quality of statistical models for the data at hand. For a set of models for the data, AIC estimates 

each model's quality relative to any one of the other models. Accordingly, AIC offers a model 

selection method. 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(𝐿) 

10)  Diagnostic Checking 

Time series diagnostic checking involves residual analysis to check that the model is a good 

fit. Residuals should first be randomly looking and not show any patterns when plotted. The 

ACF plot must not have any significant correlations, and the Ljung-Box test can verify if 

residuals are uncorrelated. Then, normality checking is needed; a histogram or Q-Q plot must 

display a roughly normal distribution. Lastly, model performance can be measured with metrics 

such as RMSE, MAE and information measures such as AIC or BIC. When diagnostic checks 

indicate problems, options for solutions include transformations such as log or differencing, 

inclusion of AR/MA terms or changing over to different models. 

 

4.3 FORECASTING 

 

4.3.1 Seasonal ARIMA (Autoregressive Integrated Moving Average) 

In a seasonal ARIMA model, seasonal AR and MA terms forecast Xt based on data values and 

past time-point errors with multiples of s lag. A seasonal ARIMA model combines non-

seasonal and seasonal parts in multiplicative structure and is expressed as ARIMA(p, d, q) × 

(P,D,Q)s, where: 

(p, d, q) represents the non- seasonal components and  

(P, D, Q)s represents the seasonal components 

Mathematically, a seasonal ARIMA model is represented as: 

Φ(𝐵𝑠)φ(B)(1 − 𝐵𝑠)𝐷(1 − 𝐵)𝑑𝑋𝑡 =  Θ(𝐵𝑠)θ(B)𝑍𝑡  

where, φ (B) = 1- φ1B- φ2B
2 -…- φp B

p,  

θ (B) = 1- θ1B- θ2B
2 -. . .- θq B

q  
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Φ (BS) = 1- Φ1B
S - Φ2B

2S -…- Φq B
PS  

Θ (BS) = 1- Θ1B
S - Θ2B

2S-…- Θq B
QS  

 

where: 

p = order of non-seasonal autoregression (AR) 

d = order of non-seasonal differencing 

q = order of non-seasonal moving average (MA) 

P = order of seasonal autoregression (SAR) 

D = order of seasonal differencing 

Q = order of seasonal moving average (SMA) 

s = number of periods in a season 

The term {Zt} represents a purely random process with zero mean and constant variance σ2. 

 

4.3.2 Exponential Smoothing methods 

Exponential smoothing techniques are mean methods that have only three inputs: the future 

forecast for the latest period (F1), the observed value for that period (yt) and the estimate of the 

smoothing constant (α). 

Exponential smoothing can easily be extended to handle time series with trends and seasonal 

variation. The form to handle a trend with non-seasonal data is most commonly known as 

Holt's exponential smoothing, while the form that also deals with seasonal variation is 

commonly known as the Holt-Winters method. 

 

 4.3.3 Holt-Winter’s Method  

Holt's technique can be generalized to handle time series that have both trend and seasonal 

fluctuations. Holt-Winters technique comes in two forms, additive and multiplicative, the \ 

application of which is based on the nature of the given time series. Let Lt, Tt, It represent the 

local level, trend and seasonal index, respectively at time t. 

Its interpretation will be based on whether seasonality is assumed to be additive or 

multiplicative. In the additive scenario i, yt-It is the deseasonalized value, whereas in the 

multiplicative category it is yt / It. The levels of the 3 quantities Lt, Tt, and It, all have 

to be estimated and so we require 3 updating equations with three smoothing 

parameters, say ∝, γ and δ. As with the smoothing parameters typically being in the range (0, 

1) beforehand. The shape of the updating equations is again intuitively plausible. 

Suppose the seasonal variation is multiplicative. Then the (recurrence form) equations for 

updating Lt, Tt, It, when a new observation yt becomes available are 
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𝐿𝑡 =  𝛼 (
𝑦𝑡
𝐼𝑡−𝑠

) + (1 − 𝛼)(𝐿𝑡 + 𝑇𝑡−1) 

𝑇𝑡 =  𝛾(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛾)𝑇𝑡−1 

𝐼𝑡 =  𝛿(𝑦𝑡/𝐿𝑡) + (1 − 𝛿)𝐼𝑡−𝑠 

and the forecasts from time (t) are then, 

𝑦𝑡+ℎ = (𝐿𝑡 + ℎ𝑇𝑡)𝐼𝑡−𝑠+ℎ 

for h= 1,2, …, s. If the seasonal variation is additive, the equations for updating Lt, Tt, It, when 

a new observation yt becomes available are 

𝐿𝑡 =  𝛼(𝑦𝑡 − 𝐼𝑡−𝑠) + (1 − 𝛼)(𝐿𝑡−1 + 𝑇𝑡−1) 

𝑇𝑡 =  𝛾(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛾)𝑇𝑡−1 

𝐼𝑡 =  𝛿(𝑦𝑡 − 𝐿𝑡) + (1 − 𝛿)𝐼𝑡−𝑠 

 

and the forecasts from time (t) are then 

𝑦𝑡+ℎ = 𝐿𝑡 + ℎ𝑇𝑡 + 𝐼𝑡−𝑠+ℎ 

For starting values, it seems sensible to set the level component L0, equal to the average 

observation in the first year i.e, 

𝐿0 =∑ 𝑦𝑡
𝑠

𝑡=1
 

where s is the number of seasons. The starting values for the slope component can be taken 

from the average difference per period between the first and second year averages i.e, 

𝑇0 = (
∑ 𝑦𝑡
2𝑠
𝑡=𝑠+1

𝑠
−
∑ 𝑦𝑡
𝑠
𝑡=1

𝑠
)/𝑠 

Finally, the seasonal index starting value can be calculated after allowing for a trend 

adjustment, as follows: 

𝐼0 =
𝑦𝑘 − (𝑘 − 1)𝑇0

2
 

 

𝐼0 =
𝑦𝑘 − (𝐿0 + (𝑘 − 1))𝑇0

2
 

Where k= 1,…,s. This will lead to (s) separate values for 𝐼0, which is what is required to gain 

the initial seasonal pattern. 
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4.4  STATISTICAL TESTS 

 

4.4.1 ADF test 

The ADF test is a type of test known as 'Unit Root Test', which is the correct way to test the 

stationarity of a time series. Augmented Dickey-Fuller (ADF) test is a popular statistical 

test that is employed in order to test if a given time series is stationary or not. It is one of the 

most popularly employed statistical tests when it comes to testing the stationarity of a series. 

It is testing the below two null and alternative hypotheses: 

H0: The time series is considered as non-stationary. 

H1: The time series is considered as stationary. 

Now if the p-value of this test is less than a certain value (say α = 0.05) 

then in those situations the null hypothesis is rejected and states that the time series is 

stationary. 
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CHAPTER  5 

RESULTS AND DISCUSSION 

 

This chapter discusses a comparative study of time series modelling and forecasting of 

monthly rubber price of grades RSS1 and RSS3 using SARIMA, Holt-Winters Exponential 

Smoothing forecasting. The data comprises 168 observations from January 2010 to December 

2023. 

Descriptive Statistics : 

Table 5.1: Descriptive Statistics 

  

 

 

Time Series plot : 

 

figure 5.1: Time series plot 

RSS1 

count 168 

mean 16490.7916 

std 2967.4198 

min 11350.0000 

25% 14050.2500 

50% 16026.5000 

75% 18183.0000 

max 25805.0000 

RSS3 

count 168 

mean 15520.7142 

std 2984.3710 

min 9570.0000 

25% 13204.0000 

50% 14997.0000 

75% 17447.7500 

max 24683.0000 



18 
Dept of Mathematics and Statistics, St Teresa’s College (Autonomous) Ernakulam  

 

Time Series Decomposition: 

To evaluate the trend, seasonality and random components seasonal decomposition is done, 

from figure 5.2 and figure 5.3 it is clear that both RSS1 and RSS3 shows seasonality. 

 

figure 5.2: Time series decomposition of RSS1 

 

 

figure 5.3: Time series decomposition of RSS3  
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5.1 MODELLING OF RUBBER PRICES OF RSS1 USING 

HOLT-WINTER’s MODEL 

Holt’s Winters Forecasting Procedure is used to forecast the rubber prices. The parameter 

estimates for the model obtained are listed in the table 

Table 5.2: Holt-Winter’s model parameters 

Parameter Parameter Estimates 

Alpha (Level) 0.895 

Beta (Trend) 0.071 

Gamma (Season) 0.001 

Then the equation for the forecast value is given as: 

𝑳𝒕 = 𝟎.𝟖𝟗𝟓(𝒚𝒕 −  𝑰𝒕−𝒔) + (𝟏 − 𝟎. 𝟖𝟗𝟓)(𝑳𝒕−𝟏 +  𝑻𝒕−𝟏) 

𝑻𝒕 = 𝟎.𝟎𝟕𝟏(𝑳𝒕 − 𝑳𝒕−𝟏) + (𝟏 − 𝟎. 𝟎𝟕𝟏)𝑻𝒕−𝟏 

𝑰𝒕 = 𝟎. 𝟎𝟎𝟏(𝒚𝒕 − 𝑳𝒕) + (𝟏 − 𝟎. 𝟎𝟎𝟏)𝑰𝒕−𝒔 

𝒚 
𝒕+𝒉

=  𝑳𝒕 +  𝒉𝑻𝒕 +  𝑰𝒕+𝒉−𝒔 

Equation 5.1: Holt- Winter’s Formula 

Diagnostic Checking : 

Diagnostic checking is a vital step in statistical modelling that ensures the model's accuracy, 

reliability, and effectiveness. It assesses the model's precision and helps refine it to achieve 

better prediction accuracy. 

 

figure 5.4: Normal Q-Q plot 

The figure 5.4 depicts the Q-Q plot , it is clear that the most of the residual values lie on the 

straight line, which indicates that residuals are approximately normally distributed. 
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figure 5.5: Autocorrelation plot 

 

The correlogram in figure 5.5 reveals that the autocorrelation at all lags is insignificant and 

decays to zero. This indicates that there is no substantial autocorrelation present in the data. 

 

figure 5.6: Histogram of Residuals 

The figure 5.6 shows that the histogram matches the normal distribution curve, the residuals 

are approximately normal. 

The diagnostic checking confirms that the fitted Holt-Winters model is statistically sound and 

adequate. Therefore, the model is suitable for forecasting monthly rubber prices. 

In-sample Forecasting: 

The fitted model is used to do In-sample forecasting. In-sample Forecasting done for the year 

2023 is given in the below table 5.3 
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Table 5.3: In sample forecasted values 

Months Actual 

Value 

Predicted 

Value 

Months Actual 

Value 

Predicted 

Values 

January 15008 16090.815202  

 

July 17996 17624.859392 

February 15275 17047.570368 August 17040 17403.294683 

March 15133 16638.122085 September 15962 16416.538661 

April 15695 16544.581736   October 16013 15791.246006 

May 16456 16511.163645   November 16162 15521.131111 

June 17140 17179.855036 December 15840 15380.115726 

 

 

figure 5.7: Actual vs Predicted values plot 

In figure 5.7 the blue line are the training data, green line is the actual testing data and orange 

line is the predicted testing data. 

Forecasting of Rubber Prices using Holt-Winters model: 

Rubber Prices from January 2024 to December 2025 is forecasted using the model. 

Table 5.4: Holt-Winter’s forecast of RSS1 

Month

s 

Forecaste

d Values 

LCL UCL Month

s 

Forecaste

d Values 

LCL UCL 

Jan 

2024 

18070.09

85 

12893.75

80   

22638.58

34 

Jan 

2025 

17354.11

03 

12882.15

83 

22643.92

76 

Feb 

2024 

17973.63

22 

11194.90

68   

20939.73

41 

Feb 

2025 

17259.10

69 

11185.76

02 

20948.62

45 
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Mar 

2024 

17942.47

89 

10584.28

71 

19024.54

10 

Mar 

2025 

17226.82

12 

10572.39

78 

19032.46

73 

Apr 

2024 

18674.53

64 

13258.65

84 

21753.25

41 

Apr 

2025 

17927.19

58 

13267.96

86 

21769.10

25 

May 

2024 

19163.83

59 

13987.25

46 

23510.68

42 

May 

2025 

18394.34

83 

14005.98

65 

23521.83

77 

Jun 

2024 

18928.47

35 

13025.15

94 

22931.35

71 

Jun 

2025 

18165.81

31 

13011.75

98 

22946.17

48 

Jul 

2024 

17860.51

36 

11246.25

31 

20864.56

42 

Jul 

2025 

17138.52

61 

11235.34

18 

20877.34

06 

Aug 

2024 

17185.33

03 

11147.02

45 

20014.35

10 

Aug 

2025 

16488.28

83 

11132.51

58 

20025.46

18 

Sep 

2024 

16896.42

80 

10475.26

53 

19584.02

45 

Sep 

2025 

16208.95

93 

10463.67

25 

19596.54

52 

Oct 

2024 

16747.96

77 

9975.698

7 

19024.74

10 

Oct 

2025 

16064.04

17 

9986.573

2 

19039.98

75 

Nov 

2024 

16778.32

02 

11783.31

59 

18953.65

41 

Nov 

2025 

16090.81

02 

11776.41

21 

18960.94

23 

Dec 

2024 

17778.55

70 

12049.58

46 

20147.68

94 

Dec 

2025 

17047.53

68 

12534.95

19 

20154.82

93 

 The Table 5.4 is the forecasted values and its LCL and UCL of rubber prices of RSS1 for 

January 2024 to December 2025. 

 

figure 5.8: Actual, Predicted and Forecasted values 

The figure 5.8 is the plot of forecasted values using Holt Winter’s model. 
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5.2 MODELLING OF RUBBER PRICE OF RSS3 USING HOLT-

WINTER’s MODEL 

Holt’s Winters Forecasting Procedure is used to forecast the rubber prices of RSS3. The 

parameter estimates for the model obtained are listed in the table 5.5 

Table 5.5: Holt-Winter’s model parameters 

Parameter Parameter Estimates 

Alpha (Level) 0.845 

Beta (Trend) 0.069 

Gamma (Season) 0.002 

Then the equation for the forecast value is given as: 

𝑳𝒕 = 𝟎.𝟖𝟒𝟓(𝒚𝒕 −  𝑰𝒕−𝒔) + (𝟏 − 𝟎. 𝟖𝟒𝟓)(𝑳𝒕−𝟏 +  𝑻𝒕−𝟏) 

𝑻𝒕 = 𝟎.𝟎𝟔𝟗(𝑳𝒕 − 𝑳𝒕−𝟏) + (𝟏 − 𝟎. 𝟎𝟔𝟗)𝑻𝒕−𝟏 

𝑰𝒕 = 𝟎. 𝟎𝟎𝟐(𝒚𝒕 − 𝑳𝒕) + (𝟏 − 𝟎. 𝟎𝟎𝟐)𝑰𝒕−𝒔 

𝒚 
𝒕+𝒉

=  𝑳𝒕 +  𝒉𝑻𝒕 +  𝑰𝒕+𝒉−𝒔 

Equation 5.2: Holt- Winter’s Formula 

 

 Diagnostic Checking: 

Diagnostic checking is a vital step in statistical modelling that ensures the model's accuracy, 

reliability, and effectiveness. It assesses the model's precision and helps refine it to achieve 

better prediction accuracy. 

 

figure 5.9: Normal Q-Q plot of residuals  

The figure 5.9 depicts the Q-Q plot, it is clear that the most of the residual values lie on the 

straight line, which indicates that residuals are approximately normally distributed. 
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figure 5.10: Autocorrelation plot of Residuals- RSS3 

 

The correlogram in figure 5.10 reveals that the autocorrelation at all lags is insignificant and 

decays to zero. This indicates that there is no substantial autocorrelation present in the data. 

 

figure 5.11: Histogram of residuals 

The figure 5.11 shows that the histogram matches the normal distribution curve, the residuals 

are approximately normal. 

The diagnostic checking confirms that the fitted Holt-Winters model is statistically sound and 

adequate. Therefore, the model is suitable for forecasting monthly rubber prices. 

In-sample Forecasting : 

The fitted model is used to do In-sample forecasting. In-sample Forecasting done for the year 

2023 is given in the below table 5.6 
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Table 5.6: In sample forecast values 

Months Actual 

Value 

Predicted 

Value 

Months Actual 

Value 

Predicted 

Values 

January 14308 15727.5764 July 15616 16729.7945 

February 14558 15888.3723 August 15004 16316.6359 

March 14700 15891.1116 September 15131 15714.0856 

April 15289 16102.2745 October 15413 15363.3154 

May 16000 15845.4650 November 15638 15155.7924 

June 15732 16294.2394 December 15376 15178.0221 

 

 

 

 

figure 5.12: Actual vs Predicted values plot 

In figure 5.12 the blue line are the training data, green line is the actual testing data and orange 

line is the predicted testing data. 

Forecasting of Rubber Prices using Holt-Winter’s model: 

Rubber Prices from January 2024 to December 2025 is forecasted using the model. 

 

Table 5.7: Holt-Winter’s forecast for RSS3 

Month

s 

Forecaste

d Values 

(Rs) 

LCL UCL Month

s 

Forecaste

d Values 

(Rs) 

LCL UCL 

Jan 

2024 

17097.23

27 

12650.54

32 

22345.67

89 

Jan 

2025 

16494.17

22 

12482.15

67 

22143.98

21 

Feb 

2024 

17328.30

00 

10987.65

43 

20678.90

12 

Feb 

2025 

16715.28

72 

10785.62

34 

20548.75

67 
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Mar 

2024 

17055.77

67 

11345.67

89 

19876.54

32 

Mar 

2025 

16450.62

08 

10172.39

56 

18632.46

73 

Apr 

2024 

17542.80

32 

12987.65

43 

21456.78

90 

Apr 

2025 

16918.52

13 

12867.94

56 

21369.10

25 

May 

2024 

18015.83

92 

13765.43

21 

23219.87

65 

May 

2025 

17372.81

68 

13505.98

65 

22121.83

77 

Jun 

2024 

17574.95

08 

12789.01

23 

22789.65

43 

Jun 

2025 

16945.79

34 

12511.75

98 

22546.17

48 

Jul 

2024 

16929.83

93 

11098.76

54 

20654.32

10 

Jul 

2025 

16321.96

24 

10935.34

18 

20477.34

06 

Aug 

2024 

16555.77

50 

10876.54

32 

19876.54

32 

Aug 

2025 

15959.54

52 

10632.51

58 

19625.46

18 

Sep 

2024 

16335.96

14 

10234.56

78 

19345.67

89 

Sep 

2025 

15745.87

69 

10063.67

25 

19296.54

52 

Oct 

2024 

16363.76

93 

9845.678

9 

19845.67

89 

Oct 

2025 

15770.89

57 

10586.57

32 

19639.98

75 

Nov 

2024 

16320.67

95 

11567.89

01 

18765.43

21 

Nov 

2025 

15727.57

64 

11376.41

21 

18560.94

23 

Dec 

2024 

16489.42

81 

11890.12

34 

19990.56

78 

Dec 

2025 

15888.37

23 

12134.95

19 

19754.82

93 

 

 The Table 5.7 is the forecasted values and its LCL and UCL of rubber prices of RSS3 for 

January 2024 to December 2025. 

 

figure 5.13 : Actual, Predicted and Forecasted values 

The figure 5.13 is the plot of forecasted values using Holt Winter’s model. 
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5.3 MODELING AND FORECASTING OF RUBBER PRICES 

OF RSS1 USING SARIMA MODEL 

 

             The figure 5.1 presents the time series plot of monthly rubber price data, revealing 

noticeable seasonality in the  data. However, visual inspection alone is insufficient to 

determine whether the changes in the mean are statistically significant. To assess this 

further, the ACF and PACF plots are examined, as shown in fig respectively. 

 

 

figure 5.14 : ACF and PACF of RSS1 

             The figure 5.14 indicates that the autocorrelation gradually decreases over time, but 

remains significant up to a considerable number of lags. This indicates the presence of 

strong autocorrelation and potential non-stationarity in the data. Now the seasonal 

index for various seasons can be obtained by ratio to moving average method. 

Table 5.8: Seasonal Indices 

Month Seasonal Indices 

January 0.967588 

February 0.994633 

March 1.013349 

April 1.032182 

May 1.031628 

June 1.053073 
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July 1.064737 

August 1.015458 

September 0.970568 

October 0.957002 

November 0.946357 

December 0.953433 

           

   

 Now set that,                       H0  =𝐷𝑎𝑡𝑎 𝑖𝑠 𝑛𝑜𝑛−𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 

                                                  H1 =𝐷𝑎𝑡𝑎 𝑖𝑠 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 

 On performing the ADF test we get, 

                                                  Dickey -Fuller : -2.6930401656524188 

                                                  p- value : 0.07525038709459231 

Since the p- value exceeds 0.05, we fail to reject the null hypothesis, indicating non-stationarity 

in the data. To achieve stationarity, we apply seasonal differencing by subtracting each value 

from its counterpart 12 periods prior (S=12), yielding the transformed data: 𝑥t = 𝑥t – 𝑥t-12. The 

resulting time series plot of the seasonally differenced data of RSS1 is illustrated in the 

figure5.15. 

 

 

figure 5.15 : Differenced data 

From the seasonal differenced figure 5.15 it is evident that the seasonal behaviour is removed 

from the series. Now again plot the seasonal differenced ACF and PACF. 

ACF plot of Seasonally differenced data : 
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                                         figure 5.16: ACF of Stationary data 

 

PACF plot of Seasonally differenced data : 

 

figure 5.17: PACF of Stationary data 

Augmented Dickey-Fuller (ADF) Test : 

To confirm that the differenced data is stationary, ADF test is done. 

                                              Dicky- Fuller : -4.283533020614704 

                                              p- value : 0.0004743009851349935 

Since p-value is less than 0.05, it is clear that the differenced data is stationary. No more 

seasonal differencing is needed. Now D=1 and d=0 . Now we plot ACF and PACF of seasonally 

differenced data at seasonal lags to find P and Q (AR and MA order). 

ACF of seasonally differenced data at seasonal lags : 
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 figure 5.18: ACF of Stationary data at Seasonal lags 

 

PACF of seasonally differenced data at seasonal lags : 

 

 

figure 5.19: PACF of Stationary data at Seasonal lags 

From the above figures we get that, non-seasonal AR and MA order is maximum p=2, 

maximum q=3 and d=0. Similarly we get, seasonal AR and MA order is maximum P=3, 

maximum Q=4 and D=1. 

 

Thus the possible time series models and their corresponding AIC statistics for the monthly 

rubber price data of RSS1 is given in Table 5.9. 

 



31 
Dept of Mathematics and Statistics, St Teresa’s College (Autonomous) Ernakulam  

Table 5.9: ARIMA models and their corresponding AIC values 

NO. ARIMA(p,d,q) x (P,D,Q) AIC 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

ARIMA(0,0,0)(0,1,0)[12] 

ARIMA(1,0,0)(1,1,0)[12] 

ARIMA(0,0,0)(0,1,0)[12] 

ARIMA(1,0,0)(0,1,0)[12] 

ARIMA(1,0,0)(2,1,0)[12] 

ARIMA(1,0,0)(3,1,0)[12] 

ARIMA(1,0,0)(3,1,1)[12] 

ARIMA(1,0,0)(2,1,1)[12] 

ARIMA(1,0,0)(2,1,2)[12] 

ARIMA(0,0,0)(2,1,1)[12] 

ARIMA(2,0,0)(2,1,1)[12] 

ARIMA(0,0,1)(2,1,1)[12] 

ARIMA(0,0,1)(2,1,0)[12] 

ARIMA(0,0,1)(3,1,1)[12] 

ARIMA(0,0,1)(1,1,0)[12] 

ARIMA(0,0,1)(3,1,0)[12] 

ARIMA(0,0,1)(2,1,1)[12] 

ARIMA(0,0,1)(2,1,0)[12] 

ARIMA(0,0,1)(3,1,1)[12] 

ARIMA(0,0,1)(1,1,0)[12] 

2069.365 

2029.511 

2067.645 

2063.344 

2008.914 

1999.322 

1993.827 

1992.300 

1996.907 

1995.808 

1993.736 

1991.523 

2008.394 

1993.166 

2028.331 

1999.217 

1989.535 

2006.482 

1991.170 

2026.489 

 

Thus by evaluating the possible time series models we get that the model ARIMA(0 , 0 , 1) x 

(2 , 1 , 1)[12] with Akaike Information Criteria (AIC) value as 1989.535 as the more appropriate 

model. 

The parameter estimates of model are 

Table 5.10 

Parameter Coefficient Standard Error z P> |z| 

ar.L1 0.9673 0.029 32.897 0.00 

ar.S.L12 -0.1665 0.135 -1.230 0.219 

ar.S.L24 -0.0876 0.065 -1.342 0.179 

ma.S.L12 -0.7914 0.170 -4.657 0.000 

sigma2 6.065e+05 9.62e+05 6.306 0.000 

 

The equation for the forecasted value is given as: 

(𝟏 − 𝟎. 𝟗𝟔𝟕𝟑 𝑩)(𝟏 − 𝟎. 𝟏𝟔𝟔𝟓 𝑩𝟏𝟐 − 𝟎.𝟎𝟖𝟕𝟔 𝑩𝟐𝟒)(𝟏 − 𝑩𝟏𝟐)𝒁𝒕 = (𝟏 − 𝟎.  𝟕𝟗𝟏𝟒 𝑩𝟏𝟐)𝜺𝒕 

Equation 5.3:SARIMA fitted equation 
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Diagnostic Checking : 

 

Diagnostic checking is a vital step in statistical modelling that ensures the model's accuracy, 

reliability, and effectiveness. It assesses the model's precision and helps refine it to achieve 

better prediction accuracy. 

figure 5.20 presents a Quantile-Quantile (Q-Q) plot, which compares the distribution of 

residuals to a normal distribution. The majority of residual values closely align with the straight 

line, suggesting that the residuals are approximately normally distributed. 

 

figure 5.20: Q-Q plot of Residuals 

 

figure 5.21: Correlogram of Residuals 

In the figure 5.21 of correlogram most spikes lie within the confidence interval (blue shaded 

region), suggesting no significant autocorrelation in residuals.  
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figure 5.22: Histogram of Residuals 

In the figure 5.22, the histogram aligns reasonably well with the normal curve N(0,1), 

suggesting approximate normality of residuals. 

Thus the diagnostic checking reveals that the fitted ARIMA (0,0,1) x (2,1,1)[12] model is 

statistically adequate. Also, the model satisfies stationary and invertibility requirements. So the 

model can be used to forecast the monthly Rubber price data of RSS1. 

 

In-sample forecast : 

The fitted time series model is now utilized for in-sample forecasting, focusing on the last year 

of the dataset, specifically January 2023 to December 2023. 

 

 

Table 5.11: In sample forecast 

Months Actual 

Value 

Predicted 

Value 

Months Actual 

Value 

Predicted 

Value 

January 15008 16016.9671 July 17996 16628.8798 

February 15275 16552.3276 August 17040 16013.3611 

March 15133 16513.7576 September 15962 15377.4795 

April 15695 16525.4214 October 16013 15157.0373 

May 16456 16367.9676 November 16162 15194.0329 

June 17140 16608.1752 December 15840 15574.2999 
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Actual versus Predicted : 

The actual versus the predicted values are plotted in fig5.23 and light blue line is the training 

data, orange line is the predicted values and dark blue is the test data. 

 

figure 5.23: Actual vs Predicted Values plot 

Forecasting of Rubber prices using SARIMA model : 

The prices of rubber of grade RSS1 from January 2024 to December 2025 is forecasted using 

the model fitted. 

 

Table 5.12: SARIMA model forecast for RSS1 

Month

s 

Forecaste

d Values 

LCL UCL Month

s 

Forecaste

d Values 

LCL UCL 

Jan 

2024 

17498.64

79 

12450.54

32 

22145.67

89 

Jan 

2025 

16849.71

48 

12345.15

67 

21943.98

21 

Feb 

2024 

17482.00

50 

10787.65

43 

20478.90

12 

Feb 

2025 

16850.08

10 

10685.62

34 

20348.75

67 

Mar 

2024 

17332.19

11 

11145.67

89 

19676.54

32 

Mar 

2025 

16745.92

73 

10072.39

56 

18432.46

73 

Apr 

2024 

17532.10

75 

12787.65

43 

21256.78

90 

Apr 

2025 

16997.07

23 

12767.94

56 

21169.10

25 

May 

2024 

17531.91

02 

13565.43

2 

23019.87

65 

May 

2025 

17003.62

64 

13405.98

65 

21921.83

77 

Jun 

2024 

16815.44

46 

12589.01

23 

22589.65

43 

Jun 

2025 

16324.20

84 

12411.75

98 

22346.17

48 

Jul 

2024 

16117.20

25 

10998.76

54 

20454.32

10 

Jul 

2025 

15642.09

20 

10835.34

18 

20277.34

06 
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Aug 

2024 

15807.63

99 

10676.54

32 

19676.54

32 

Aug 

2025 

15355.25

87 

10532.51

58 

19425.46

18 

Sep 

2024 

15686.08

57 

10034.56

78 

19145.67

89 

Sep 

2025 

15308.73

35 

10063.67

25 

19196.54

52 

Oct 

2024 

16031.60

22 

9625.678

9 

19645.67

89 

Oct 

2025 

15662.90

13 

10486.57

32   

19439.98

75 

Nov 

2024 

16365.25

74 

11367.89

01 

18565.43

21 

Nov 

2025 

16016.96

71 

11276.41

21 

18360.94

23 

Dec 

2024 

16858.58

63 

11690.12

34 

19790.56

78 

Dec 

2025 

16552.32

76 

12034.95

19 

19554.82

93 

 

 

 

 

figure 5.24:  Plot of forecasted values of RSS1 

 

 

 

5.4 MODELING AND FORECASTING OF RUBBER PRICES 

OF RSS3 USING SARIMA MODEL  

The figure 5.1 presents the time series plot of monthly rubber price data, revealing noticeable 

seasonality in the  data. However, visual inspection alone is insufficient to determine whether 

the changes in the mean are statistically significant. To assess this further, the ACF and PACF 

plots are examined, as shown in fig respectively. 
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figure 5.25: ACF and PACF of RSS3 

            The fig 5.25 indicates that the autocorrelation gradually decreases over time, but 

remains significant up to a considerable number of lags. This indicates the presence of 

strong autocorrelation and potential non-stationarity in the data. Now the seasonal 

index for various seasons can be obtained by ratio to moving average method. 

Table 5.13: Seasonal Indices 

Month Seasonal Indices 

January 0.977924 

February 0.990382 

March 1.004616 

April 1.021938 

May 1.009572 

June 1.024631 

July 1.038888 

August 1.012122 

September 0.987418 

October 0.980680 

November 0.975853 

December 0.975977 

           

 Now set that,                           H0  =𝐷𝑎𝑡𝑎 𝑖𝑠 𝑛𝑜𝑛−𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 

                                                  H1 =𝐷𝑎𝑡𝑎 𝑖𝑠 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 

  On performing the ADF test we get, 
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                                                  Dickey -Fuller : -2.235191778203874 

                                                   p- value : 0.19372162813031552 

Since the p- value exceeds 0.05, we fail to reject the null hypothesis, indicating non-stationarity 

in the data. To achieve stationarity, we apply seasonal differencing by subtracting each value 

from its counterpart 12 periods prior (S=12), yielding the transformed data: 𝑥t = 𝑥t – 𝑥t-12. The 

resulting time series plot of the seasonally differenced data of RSS3 is illustrated in the 

figure5.26. 

 

figure 5.26: Differenced data of RSS3 

From the seasonal differenced figure 5.26 it is evident that the seasonal behaviour is removed 

from the series. Now again plot the seasonal differenced ACF and PACF. 

 

ACF plot of Seasonally differenced data : 

 

figure 5.27: ACF of Stationary data 

 



38 
Dept of Mathematics and Statistics, St Teresa’s College (Autonomous) Ernakulam  

PACF plot of Seasonally differenced data : 

 

figure 5.28: PACF of Stationary data 

Augmented Dickey-Fuller (ADF) Test : 

To confirm that the differenced data is stationary, ADF test is done. 

                                              Dicky- Fuller : -7.0914751951317605 

                                              p- value : 4.398830065116639e-10 

Since p-value is less than 0.05, it is clear that the differenced data is stationary. No more 

seasonal differencing is needed. Now D=1 and d=0 . Now we plot ACF and PACF of seasonally 

differenced data at seasonal lags to find P and Q (AR and MA order). 

ACF of seasonally differenced data at seasonal lags : 

 

                                               figure 5.29: ACF of Stationary data at seasonal lags 
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PACF of seasonally differenced data at seasonal lags : 

 

 

figure 5.30: PACF of Stationary data at Seasonal lags 

From the above figures we get that, non-seasonal AR and MA order is maximum p = 2, 

maximum q = 3 and d = 0. Similarly we get, seasonal AR and MA order is maximum P = 4, 

maximum Q = 4 and D = 1. 

Thus the possible time series models and their corresponding AIC statistics for the monthly 

rubber price data of RSS3. 

Table 5.14: ARIMA models and their corresponding AIC values 

NO. ARIMA(p,d,q) x (P,D,Q) AIC 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

ARIMA(0,0,0)(0,1,0)[12] 

ARIMA(1,0,0)(1,1,0)[12] 

ARIMA(0,0,0)(0,1,0)[12] 

ARIMA(1,0,0)(0,1,0)[12] 

ARIMA(1,0,0)(2,1,0)[12] 

ARIMA(1,0,0)(3,1,0)[12] 

ARIMA(0,0,0)(3,1,0)[12] 

ARIMA(2,0,0)(3,1,0)[12] 

ARIMA(1,0,1)(3,1,0)[12] 

ARIMA(0,0,1)(3,1,0)[12] 

ARIMA(2,0,1)(3,1,0)[12] 

ARIMA(1,0,0)(3,1,0)[12] 

ARIMA(1,0,0)(2,1,0)[12] 

ARIMA(0,0,0)(3,1,0)[12] 

ARIMA(2,0,0)(3,1,0)[12] 

ARIMA(1,0,1)(3,1,0)[12] 

ARIMA(0,0,1)(3,1,0)[12] 

2064.691 

2031.964 

2063.013 

2062.335 

2017.469 

1865.821 

1997.351 

1989.252 

2003.017 

2079.293 

2189.359 

1989.356 

2133.654 

1975.482 

2045.687 

1905.367 

1952.147 
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18 

19 

20 

ARIMA(2,0,1)(3,1,0)[12] 

ARIMA(1,0,0)(3,1,1)[12] 

ARIMA(1,0,0)(2,1,1)[12] 

2099.349 

1962.517 

1956.241 

 

 

Thus by evaluating the possible time series models we get that the model ARIMA(1, 0 , 0) x 

(3, 1 , 0)[12] with Akaike Information Criteria (AIC) value as 1865.821 as the more 

appropriate model. 

The parameter estimates of model are 

Table 5.15: ARIMA(1, 0 , 0) x (3, 1 , 0)[12] model parameters 

Parameter Coefficient Standard Error z P> |z| 

ma.L1 0.8489 0.073 11.694 0.000 

ar.S.L12 -0.1248 0.113 -1.105 0.269 

ar.S.L24 0.0828 0.121 0.684 0.494 

ar.S.L36 -0.0064 0.080 -0.080 0.936 

sigma2 1.841e+06 2.79e+05 6.602 0.000 

The equation for the forecasted value is given as: 

(𝟏 − 𝟎.𝟏𝟐𝟒𝟖 𝑩𝟏𝟐 + 𝟎. 𝟎𝟖𝟐𝟖 𝑩𝟐𝟒 − 𝟎.𝟎𝟎𝟔𝟒 𝑩𝟑𝟔)(𝟏 − 𝑩𝟏𝟐)𝒁𝒕 = (𝟏 + 𝟎.𝟖𝟒𝟖𝟗 𝑩)𝜺𝒕 

Equation 5.4: SARIMA fitted equation 

 

Diagnostic Checking: 

 

Diagnostic checking is a vital step in statistical modelling that ensures the model's accuracy, 

reliability, and effectiveness. It assesses the model's precision and helps refine it to achieve 

better prediction accuracy. 

Figure 5.31 presents a Quantile-Quantile (Q-Q) plot, which compares the distribution of 

residuals to a normal distribution. The majority of residual values closely align with the straight 

line, suggesting that the residuals are approximately normally distributed. 
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figure 5.31: Q-Q plot of Residuals 

 

figure 5.32: Correlogram of Residuals 

In the figure 5.32 of correlogram most spikes lie within the confidence interval (blue shaded 

region), suggesting no significant autocorrelation in residuals.  

 

figure 5.33: Histogram of Residuals 
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In the figure 5.33 , the histogram aligns reasonably well with the normal curve N(0,1), 

suggesting approximate normality of residuals. 

Thus the diagnostic checking reveals that the fitted ARIMA (0,0,1) x (3,1,0)[12] model is 

statistically adequate. Also, the model satisfies stationary and invertibility requirements. So the 

model can be used to forecast the monthly Rubber price data of RSS3. 

 

In-sample forecast : 

The fitted time series model is now utilized for in-sample forecasting, focusing on the last year 

of the dataset, specifically January 2023 to December 2023. 

Table 5.16: In sample forecasts 

Months Actual 

Value 

Predicted 

Value 

Months Actual 

Value 

Predicted 

Value 

January 14308 14943.4592  July 15616 15353.5088 

February 14558 15093.5834 August 15004 15087.3847 

March 14700 15077.7452 September 15131 14705.3299 

April 15289 15136.8067 October 15413 14528.9594 

May 16000 14747.8681 November 15638 14536.4954 

June 15732 15054.1140 December 15376 14745.9669 

 

Actual versus Predicted : 

The actual versus the predicted values are plotted in figure 5.34 and light blue line is the training 

data, orange line is the predicted values and dark blue is the test data. 

 

figure 5.34: Actual vs Predicted plot 
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Forecasting of Rubber prices using SARIMA model : 

The prices of rubber of grade RSS3 from January 2024 to December 2025 is forecasted using 

the model fitted. 

 

Table 5.17: SARIMA model forecasts for RSS3 

Mont

hs 

Forecaste

d Values 

LCL UCL Mont

hs 

Forecaste

d Values 

LCL UCL 

Jan 

2024 

16092.88

96 

10548.21

58 

19268.01

24 

Jan 

2025 

15354.28

53 

10482.369

8 

19206.74

32 

Feb 

2024 

16146.52

79 

10984.21

57 

19035.32

56 

Feb 

2025 

15412.73

51 

10929.369

8 

19006.74

32 

Mar 

2024 

15924.67

57 

9147.654

2 

19243.65

20 

Mar 

2025 

15156.17

39 

9034.9876 19204.12

34 

Apr 

2024 

16093.82

12 

11035.35

71 

19987.36

51 

Apr 

2025 

15461.94

96 

11004.215

7 

19958.90

12 

May 

2024 

16334.53

88 

10654.20

57 

19872.32

97 

May 

2025 

15717.33

58 

10604.205

7 

19843.87

65 

Jun 

2024 

15907.13

56 

9958.214

7 

18832.69

45 

Jun 

2025 

15370.85

30 

9834.9876 18795.87

65 

Jul 

2024 

15486.88

35 

9831.046

5 

18624.39

27 

Jul 

2025 

14938.60

67 

9731.0465 18595.87

65 

Aug 

2024 

15148.02

16 

9364.852

0 

18643.92

56 

Aug 

2025 

14657.79

40 

9264.8520   18604.90

12 

Sep 

2024 

14829.76

01 

9047.365

3 

18035.97

65 

Sep 

2025 

14538.39

98 

8947.3653 18006.87

65 

Oct 

2024 

15016.02

50 

10584.36

92 

18976.25

48 

Oct 

2025 

14747.01

95 

10534.369

2 

18946.25

48 

Nov 

2024 

15245.41

84 

10684.35

29 

19163.68

42 

Nov 

2025 

14943.45

92 

10634.352

9 

19134.68

42 

Dec 

2024 

15334.12

48 

10023.34

73 

18354.05

48 

Dec 

2025 

15093.58

34 

10003.347

3  

18325.05

48 
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figure 5.35: Plot of forecasted values of RSS3 

 

5.5 COMPARISON BETWEEN SARIMA AND HOLT-

WINTER’s MODEL 

 

To determine the best model, performance metrices like Mean Absolute Error (MAE) 

and Root Mean Square Error is provided for the models 

Table 5.18: RMSE and MAE values 

 SARIMA Model Holt-Winter’s Model 

RSS1 MAE 1028.25483167512 902.132895670896 

RMSE 1534.368953102475 1052.6545712051168 

RSS3 MAE 1069.6584392175 841.373498511357 

RMSE 1684.5443951266758 984.7016247779933 

 

Thus for both grades of rubber RSS1 and RSS3, Holt-Winter’s have lower MAE and RMSE 

values, so Holt-Winter’s model is a better performer than SARIMA model. 
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CONCLUSION 

 

Two time series models were employed to forecast monthly rubber price values of two grades 

of rubber RSS1 and RSS3 from January 2024 to December 2025 utilising the historical data of 

two grades from January 2010 to December 2023. The time series models used are SARIMA 

and Holt-Winter’s exponential smoothing technique. It was concluded that the Holt-Winter’s 

model is the best model for both grades of rubber. In case of RSS1, the Holt-Winter’s model 

has a low RMSE of 1052.655 and MAE of 902.133 when compared to that of SARIMA which 

has RMSE OF 1534.369 and MAE of 1028.254.  In case of RSS3, the Holt-Winter’s model has 

a low RMSE of 984.702 and MAE of 841.373 when compared to that of SARIMA which has 

RMSE OF 1684.544 and MAE of 1069.658. Both models provide effective forecasting 

solutions. However, if computational efficiency is a top priority, Holt-Winter's Exponential 

Smoothing is suitable for simpler datasets. For datasets with clear statistical properties and 

stationarity, SARIMA is a robust choice, but requires careful parameter tuning, which can 

be time-consuming. 

In conclusion, this study sheds light on the historical trends and patterns in rubber prices, 

revealing valuable insights for stakeholders. While this study informs about the past, it also 

paves the way for future exploration in the realm of commodity price forecasting, empowering 

stakeholders to make informed decisions in an ever-changing market landscape. 
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