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ABSTRACT

In this study, monthly rainfall data of Kerala from July 2010 to December 2024 are analyzed
and used for forecasting future rainfall value. The raw data were obtained from the official
website of Department of Economics and Statistics, Thiruvananthapuram and Kerala Water
Resource Irrigation System. Three time series model were deployed to forecast future monthly
rainfall data of Kerala. SARIMA, Holt-Winter's Exponential Smoothening and prophet
model were used to forecast the monthly rainfall of Kerala from January 2025 to December
2026. Comparison of these models were done using matrices like RMSE and MAE. Prophet
model was selected as the best model with lowest RMSE value and MAE value.
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CHAPTER 1
INTRODUCTION

Rainfall is vital for all life on Earth and plays a significant role in ecosystem processes, crop
production, and hydroelectric energy. Being the major source of water, rainfall has a critical
impact on water resource management, agricultural planning, flood control, disaster
preparedness, tourism, transportation, and environmental monitoring, among others.
Knowledge of rainfall patterns and trends can improve decision-making in such areas. Rainfall
distribution and intensity vary between regions based on latitude, elevation, and atmospheric

conditions

Kerala's unique geography and topography, with the Western Ghats to the east and the Arabian
Sea to the west, create significant rainfall variability across the state. The orographic effect of
the Western Ghats results in heavy rainfall on the windward side during the Southwest
Monsoon, while coastal areas receive more rainfall due to proximity to the sea. High-altitude
regions like Wayanad, Idukki, and Munnar record more rainfall compared to lowlands, and the

state's diverse geography leads to microclimates with localized rainfall patterns.

Kerala is the entry point of the Indian subcontinent summer monsoon. The major rainy seasons
of the state are the southwest monsoon (June—September) and the northeast monsoon (October—
November) (Raj & Azeez, 2012). The analysis of rainfall data from a century trend shows a
statistically significant (99%) decreasing trend in many areas of Kerala, especially in January,
July, and November (Nair et al., 2014). Climate change is now an undeniable phenomenon,
leading to catastrophic weather occurrences globally. Numerous factors determine a region's
climate, such as latitude, height, pressure and wind patterns, distance from the sea, ocean
currents, and terrain. Differing rainfall patterns and unexpected heatwaves rank among the most
severe impacts of climate change (Varghese & Vanitha, 2020). A historical analysis of rainfall
in Kerala, carried out by the Indian Meteorological Department (IMD), shows changes in

Kerala's rainfall pattern. The state records highest rainfall during July followed by June.

There has been a visible decrease in southwest monsoon rainfall, while post-monsoon rainfall
has increased. The reduction in rainfall is most pronounced during June and July, whereas
August and September have been relatively consistent during the monsoon season
(Krishnakumar et al., 2009). Rainfall trends also differ from one region to another, with a rising
trend noted in northern and eastern stations, whereas southern and western stations show a
declining trend (Jagadeesh & Anupama, 2014). The occurrence of both Moderate Rain (MR)
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and Heavy Rain (HR) events has decreased over Kerala, though some grids in the eastern region
of the state have experienced a considerable rise in HR events during 1971-2019 (Surendran et
al., 2020).

A number of research studies have investigated rainfall analysis and forecasting through
different approaches. Construction of a precise forecasting system continues to pose problems
for researchers, one of the problems being how to process past data and forecast future trends.
Time series modeling presents a possible solution. For example, rainfall forecasting in Idukki
district has been made with models like Autoregressive Integrated Moving Average (ARIMA),
Artificial Neural Networks (ANN), and Exponential Smoothing State Space (ETS) (Kamath &
Kamat, 2018). Further, artificial intelligence methods have also proven to predict Kerala's
monsoon seasons with little prediction error (Dash et al., 2018). Comparative analyses using
models such as SARIMA, Facebook Prophet, and Long Short-Term Memory (LSTM) networks

have also been implemented (Sulasikin et al., 2021).

Time Series Analysis of Rainfall in Kerala, in its desire to determine the rainfall trends and
patterns in Kerala, as well as predict rainfall in the future, sought to fill this need. This study
helps to know about Kerala's shifting patterns of rainfall. Raw data for the study were obtained
from the official website of the Department of Economics and Statistics, Thiruvananthapuram,
and the Kerala Water Resource Irrigation System. Monthly rainfall data for the period from
July 2010 to December 2024 were employed for predicting patterns of rainfall during January
2025 to December 2026.

1.1 OBJECTIVES
1. To perform EDA(Exploratory Data Analysis) to find pattern and trend of rainfall.
2. Tomodeland forecast rainfall in Kerala using Seasonal ARIMA (Auto Regressive
Integrated Moving Average).
3. Tomodeland forecast rainfall in Kerala using Holt Winter’s Exponential smoothing
technique

4. Tomodeland forecast rainfall in Kerala using Prophet model
5. To compare the forecast of Seasonal ARIMA, Holt Winter’s Exponential smoothing

technique and Prophet model.

Dept of Mathematics and Statistics, St. Teresa’s College (Autonomous), Ernakulam
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CHAPTER 2

REVIEW OF LITERATURE

This chapter shows the results from the related research that analysed the various Rainfall
datasets and made prediction using various statistical methods, data mining techniques,

machine learning algorithms and so on.

Krishnakumar et al. (2009) studied Kerala's 20th-century trends in rainfall by analyzing 1871-
2005 data based on Mann-Kendall statistics and linear trend analysis. A significant reduction
in southwest monsoon rainfall, particularly in June and July, was observed, affecting
hydropower generation and water supply during the summer season. In contrast, post-monsoon

rainfall increased, and, if continued, would be beneficial for plantation crops.

Raj and Azeez (2012) investigated rainfall trends in the Bharathapuzha River basin, Kerala,
India. From 34 years of rainfall data at 28 rain gauge stations, they analyzed patterns through
Mann-Kendall statistics and wavelet analysis. The study revealed a notable decrease in annual,
southwest monsoon, and pre-monsoon rainfall in recent years, which was likely due to global

climate fluctuations and local environmental changes.

Jagadeesh and Anupama (2014) made a statistical and trend analysis of rainfall at the
Bharathapuzha River basin. The 33-year study (1976-2008) indicated an increasing trend in
southwest monsoon rainfall and annual rainfall at Eruthempathy and Malampuzha Dam,
but northeast monsoon rainfall fell at all four stations. Sen's slope analysis placed
Malampuzha Dam at having the highest year-to-year increase in rainfall (1.55 mm/year), and
the maximum decrease was recorded by Thrithala (=5.80 mm/year). As a whole, the study
recorded rising rainfall trends in the north and east and decreasing trends in the south and west,

which is crucial information for managing future water resources.

Nair et al. (2014) conducted the Spatio-temporal analysis of rainfall trends over a coastal state
(Kerala) of India for the past 100 years. This research examines rainfall variability and trends in
Kerala for the last 100 years, which show strong (99%) declining trends, especially in January,
July, and November, possibly due to global climate anomalies, urbanization, and deforestation.
Regional variation indicates more rainfall variability in  northern and southern Kerala,
with changing seasonal means and rising asymmetry in rainfall distribution, as revealed by the

seasonality index (SI).
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Dash et al. (2018) also did research on the forecasting of rainfall over Kerala, India, applying
artificial intelligence methods. Their work addressed shifting monsoon trends in Kerala, and
results showed that the state experienced declining seasonal and post-monsoon rainfall, together
with rising deficits in rainfall years, potentially enhancing water shortage in the state. The
research utilized artificial intelligence models and established that the Extreme Learning
Machine (ELM) model, with a reduced error rate of 3.8729%, performed better than the Single

Layer Feed-Forward Neural Network (SLFN) in predicting summer monsoon rainfall.

Kamath and Kamat (2018) investigated time-series analysis and rainfall prediction for Idukki
district, Kerala, based on a dataset obtained from Knoema, an open data website. Their work
sought to compare the performance of different time-series models using January 2006 to
December 2016 monthly rainfall data. The study applied ARIMA, Artificial Neural Network
(ANN), and Exponential Smoothing State Space (ETS) models. Of these, ARIMA outperformed

others, as was determined using Root Mean Squared Error (RMSE) and model fit criteria.

Surendran et al. (2020) examined the effect of climate change on heavy rainfall occurrences in
Kerala during June to September from 1901 to 2019. They compared heavy rainfall (HR > 100
mm) and moderate rainfall (MR between 5 mm and 100 mm) events, separating the period into
two phases: 1901-1970 and 1971-2019. There was a notable declining trend in both MR (99%
confidence level) and HR (95% confidence level) events, as well as a general decline in seasonal
rainfall. Dekadal analysis showed a decrease in MR and HR events, especially in late July and
mid-August, while HR events during early August had a notable rise (95%) in the second phase,
which peaked in 2019 at 127 events. Although overall there has been a decline, some of the
eastern regions saw an increase in HR events that triggered recent extreme rainfalls and

landslides.

Varghese and Vanitha (2020) implemented time-series-based rainfall forecasting analysis for
Idukki district, Kerala, using data from Knoema (2006-2016). These authors compared ARIMA,
ANN, and ETS model performances to conclude ARIMA was best, according to RMSE and

model fit.

Sulasikin and Nugraha (2021) studied the monthly rainfall forecasting with the Facebook Prophet
model as a flood-mitigation effort in Central Jakarta. The researchers compared SARIMA,
Facebook Prophet, and the LSTM models as rainfall predictors during a two-year period. Their

findings revealed Facebook Prophet as the most effective model with the least MSE and RMSE.
Dept of Mathematics and Statistics, St. Teresa’s College (Autonomous), Ernakulam
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Facebook Prophet successfully forecasted high levels of rainfall for January and February 2021,

indicating likely flood threats. These results highlight the value of the model for evidence-based
flood mitigation policy and offer a benchmark for further research.
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CHAPTER 3

MATERIALS AND METHODOLOGY

3.1 DATACOLLECTION

The dataset utilized in this study comprises monthly rainfall measurements (in millimeters) for
Kerala, spanning from July 2010 to December 2024. The data was sourced from the official
website of the Department of Economics and Statistics, Thiruvananthapuram and Kerala Water
Resource Irrigation System.

32 METHODOLOGY

The initial step in the analysis involved thoroughly examining the dataset. The primary
objective of the study was to analyze rainfall patterns and trends in Kerala and forecast future
rainfall using time series models. To begin, exploratory data analysis (EDA) was conducted to
understand the dataset's characteristics. Subsequently, the SARIMA model, Holt-Winter’s
Exponential Smoothing technique, and the Prophet model were applied for forecasting. Finally,
the performance of these three models was compared by evaluating their MAE and RMSE

values.

3.3 TOOLSFOR ANALYSIS AND FORECASTING

1. EDA(Exploratory Data Analysis)

2. Seasonal ARIMA(Auto regressive Integrated Moving Average)
3. Holt-Winter's Exponential Smoothening Technique

4. Prophet model
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3.4 TOOLSFOR COMPARISON

1. Mean Absolute Error (MAE)
The formula for MAE is:
yn o |yi—yhi|

MAE = _i=1
n

where, y;is the i-th observed value, y*;is the corresponding predicted value,

n is the number of observations.

2. Root Mean Squared Error (RMSE)

The formula for RMSE is:

i i

RMSE = V-=1
n

where, y;is the actual value for the i-th observation, y*; is the predicted value for the

i-th observation, n is the number of observations.

35 PYTHON

In this study, Python is a high-level, versatile, and easy-to-read programming language. Python
was used to do EDA to find hidden patterns of the data set and to forecast using SARIMA and

Holt-Winter's Exponential Smoothening Technique and prophet model.
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CHAPTER 4

EXPLORATORY DATAANALYSIS (EDA)

4.1 EXPLORATORY DATA ANALYSIS (EDA)

It is the first step of data analysis process, it helps to understand the underlying structure and
patterns of data. It also helps to understand the relationships within dataset. EDA can be also
used to understand the quality of data, check null values, missing values etc. Using EDA after
checking for null and missing values, next step is to summarize and visualize the data to
understand it more. This may include calculating summary statistics such as mean, median,
mode and standard deviation etc. Visualizing the data, decomposing the data to trend , seasonal

and residual also include in this.

4.2 DESCRIPTIVE STATISTICS

Descriptive statistics summarize the key characteristics of a dataset, including its central
tendency, variability, and distribution. Measures such as the mean, median, and mode represent
the dataset’s central values, while standard deviation and quartiles help assess the spread of data
and detect outliers or extreme values. Overall, descriptive statistics provide a comprehensive
summary of the dataset, facilitating a better understanding of the data and ensuring accurate

further analysis.

43 TIME SERIES VISUALISATION

Time series visualization refers to the graphical representation of data recorded at consecutive
time intervals. Various techniques, including line plots, seasonal subseries plots, autocorrelation
plots, histograms, and interactive visualizations, help analysts detect trends, patterns, and
anomalies within the data. These visual tools play a crucial role in interpreting time-dependent

data and making informed decisions.

4.4 SEASONAL DECOMPOSITION

Seasonal decomposition is a technique used to break down time series data into three
components: trend, seasonality, and residual. This process helps in identifying whether the data
exhibits seasonal patterns and understanding the overall trend. Recognizing these components

aids in selecting an appropriate forecasting model and improving prediction accuracy.
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Trend: Represents the long-term increase or decrease in data over time.

Seasonal: Refers to a recurring and predictable pattern that repeats at regular intervals, such as
monthly, weekly, or daily. Rainfall patterns are an example of seasonal behavior in time series
data.

Residual: The difference between the actual observed values and the predicted values.

Residuals help evaluate how well the model fits the data.

Overall, exploratory data analysis (EDA) serves as the initial and most critical step in data
analysis. It helps identify missing or null values, understand data patterns, and determine the

most suitable forecasting models to enhance prediction accuracy.
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CHAPTERS5

TIME SERIES ANALYSIS

Time Series Analysis is a statistical process employed for analysis and interpretation of data at
pre-specified intervals of time. It enables patterns, trends, seasonality, and intrinsic patterns in
the underlying time-dependent data to be revealed, leading to predictions as well as analysis
for future values. A time series is an interaction between a variable and time itself, measured
over regular time periods like annual, monthly, weekly, daily, or hourly. Some examples of
time series data are hourly temperatures, daily sales, and monthly production. Mathematically,
a time series is defined by the function relationship Y. = f(t), where Y. is the value of the variable

under consideration at time t.

51 COMPONENTS OF TIME SERIES

Trend(Te): The trend is the general long-run movement or tendency of the data over time.
Icaptures whether or not the series follows a consistent rise, fall, or neither. Trends can be linear,

with a steady rise or fall, or nonlinear, with more complicated fluctuations.

Seasonality (St): Seasonality refers to repeating cycles or variations occurring at regular times
within a series of time data. These usually recur on annual, quarterly, monthly, or weekly cycles

and are caused by seasonal changes, holidays, or business cycles.

Cyclic variations (€t) : Cyclical variations are long-term fluctuations in a time series that donot
have a fixed period such as seasonal patterns. These cycles generally last for a few years and are

associated with economic or business cycles, capturing phases of growth and decline.

Irregularity or Noise (¢) : Irregularity, alternatively referred to as noise or randomness,
accounts for unexpected changes in the data that cannot be explained through trend, seasonality,
or cyclical patterns. These fluctuations can be a result of random occurrences, errors in
measurements, or unanticipated external forces, which increase the difficulty in observing

underlying patterns within the time series.
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52 MATHEMATICAL MODELS FOR TIME SERIES ANALYSIS

In time series analysis, there are supposed to be two models typically for the

decompositions of a time series into its constituents.

a) Additive Model: As per the additive model, decomposition of time series is carried out
with the assumption that the impact of different components is additive.

Yt:Tt'l' St+Ct+ It

Where Y.is the time series value and T:, S:, C.and I; stands for trend, seasonal variations,
cyclical variations and irregular variations respectively. In this model S;, C:and I; are absolute
quantities and can have positive or negative values. The model postulates that four elements of
the time series are independent of one another.

b) Multiplicative Model: Under the multiplicative model, the breakdown of a time series is
made on the premise that the impacts of the four parts of the time series are not mutually
independent. Under the multiplicative model,

Ytth*St* Ct*]t

In this model T: , S:, C:and I are not absolute amounts as in the case of the additive model.
There are relative variations and are expressed as rates or indices fluctuating above or below

unity. The multiplicative model can be expressed in terms of the logarithm.
logY: =logT: +logS: +tlogC: + logl
5.3 MEASUREMENT OF SEASONAL VARIATIONS

Seasonal variation is measured in terms of an indicator, called a seasonal indicator. It's an normal
that can be used to compare an factual observation relative to what it would be if there was no

seasonal variation.

(a) Method of simple averages
(b) Ratio to Trend Method

(c) Ratio to Moving average method
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TIME SERIES ANALYSIS OF RAINFALL IN KERALA

54 TIME SERIESMODELING
5.4.1 BASIC DEFINITIONS

I.  Stationary Time series

Stationary time series refers to series of observations where the mean, variance and the
Autocorrelation remains constant over time. It is a time series data which exhibit a stable

behaviour without trend and seasonality.

ii.  Non-stationary Time series

Non-stationary time series refers to series of observation where the mean variance and the
Autocorrelation varies over time. It is a time series data exhibit unstable behaviour with trend,

seasonality and other patterns. Non-stationary data cannot be used for analysis.

lii.  Auto Correlation Function (ACF)

Autocorrelation function in time series is a tool used to measure the correlation between a time
series and its lagged value at different time intervals. ACF value of 1 or -1 indicate strong
positive or negative autocorrelation. Patterns of ACF give idea about seasonality and other
random behaviours. Stationarity can be assessed by ACF, ACF plots with lags dying to zero
represents stationarity. The autocorrelation function of a stationary time series {Z:}, p(k) at lag
k is defined as the correlation at lag k between Z; and Z:+«. Thus the autocorrelation function
at lag k is given by,

=y
p(k) -

where y(k) = Cov (Z¢, Ze+k)
lv.  Partial Autocorrelation Function (PACF)

The Partial Autocorrelation Function (PACF) comes to test the immediate connection between
two observations of a time series with further data effect accounted for. PACF employed to
determine the MA parameter for SARIMA and ARIMA model. Partial autocorrelation
function, as with the autocorrelation function, carries important information about the

dependence structure of a stationary process.
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In the context of time series, a large portion of the correlation between Z: and Z:+,can be due
to the correlation these variables have with (Z:-1, Zt-2, ....Zt-k+1). The partial autocorrelation

of lag k can be thought of as the partial regression coefficients kk in the representation.

2= Q1121+ Opp 2y +.. A Qi Z_j +&,

Thus the partial autocorrelation at lag k, @, measures the correlation between Z.and Z:—«

after adjusting for the effects of (Z:-1, Zt—2, ..., Zt—k+1).

v.  Augmented Dickey Fuller Test

The ADF test is part of a type of test referred to as 'Unit Root Test', which is the correct procedure
for testing a time series for stationarity. Augmented Dickey-Fuller (ADF) test is a popular
statistical test applied to test if a specific time series is stationary or not. It is one of the most
popular statistical tests used in the context of analyzing the stationarity of a series. It is testing
the following two null and alternative hypotheses:

Ho: The time series is non-stationary.

H1: The time series is stationary.
Now, if the p-value from this test comes out to be less than a particular level (e.g. a=0.05)

then in such cases the null hypothesis is rejected and concludes that the time series is stationary.

vi.  Stationarity

The ARIMA technique is suitable only for a stationary series of data. Stationarity means that the
AR coefficients should meet certain requirements for an ARIMA model to be stationary. There
is a reason why we need stationarity: otherwise, we could not obtain meaningful estimates of the
parameters of a process. When p=0, we have a pure MA model or a white noise series. All white
noise and pure MA models are stationary, and so there are no stationarity conditions to test.
Foran AR (1) or ARMAC(1, q) process, the stationary requirement is that the absolute value of
@1 must be less than one: |@4] < 1.

Foran AR(2) or ARMA(2, q) process, the stationary requirement is a set ofthree conditions:

|@2] < 1,and @1 — @2 < 1.
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vii.  Invertibility

There is a second requirement that ARIMA models need to meet known as invertibility. This
condition stipulates that the coefficients of the MA need to meet specific requirements. There
is a rational basis for invertibility: a non-invertible ARIMA would mean that weights assigned
to older Z observations do not decrease as we go back further in time, but rationality dictates
that higher weight should be assigned to more recent observations. Invertibility guarantees that
these outcomes persist. If =0, then we have either a pure AR process or a white noise series.
All white noise and pure AR processes are invertible and no additional checks are needed

For an MA (1) or ARMA(p, 1) process, invertibility requires that the absolute value of 61 must

be less than one, |61|< 1, 61+68, <1,and 81 — 0, < 1.

viii.  Auto Regressive (AR) Process

A time series {Z} is said to be an autoregressive process of order p, abbreviated as AR(p) if it
is a weighted linear sum of the past p values plus a random shock so that

Zt =Q1Zi 1+ D22 +..+DpZi—p +&;
where {&:} denotes a purely random process with 0 mean and constant variance o2. Using the

backward shift operator B, such that BZ:;= Z;-1 , the AR (p) model may be written more
succinctly in the form,

@(B) Zi=¢&t
where @(B) = 1- @1B - @2B? -...- @,B? is a polynomial in B of order p.
iX.  Moving Average (MA) Process

A time series {Z:} is said to be a moving average process of order g, abbreviated as MA(q) if

it is a weighted linear sum of the last g random shocks so that
Zy =& —0181— 065 — 048

where {&:} denotes a purely random process with 0 mean and constant variance o2 . Using the
backward shift operator B the MA (g) model may be written in the form,

Zi=40 (B) Et
where 8(B) =1—61B - 0,B2 -...- 6,B1 is a polynomial in B of order q.

X.  Auto Regressive Moving Average Process (ARMA)
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Mixed autoregressive moving average model with p auto regressive terms and g moving
average terms is abbreviated as ARMA(p,q) is given by
Zy =012 1—DrZy g - Ol = & — 0181 — 0265 — 045,
Using the backward shift operator B, the ARMA(p,q) can be written in the form,
Zt— 01BZ—@2B%*Z; -...- OpBrPZi =&t — 01Ber — 02B%er — O4Bis;
?B) Z: =0 (B) &

where @(B) and 9 (B) are polynomial in B ofdegree of order p and g respectively

xi.  Akaike Information Criteria (AIC)

The Akaike Information Criterion (AIC) is a statistical metric used to evaluate and compare
models in time series forecasting. It helps identify the best-fitting model by balancing goodness
of fit and model complexity.

The AIC is calculated using the formula:
AIC=2k—2In(L)

where k represents the number of parameters in the model, and L is the maximum likelihood of
the model. A lower AIC value indicates a better model, as it suggests a good trade-off between

accuracy and simplicity.
xii.  Diagnostic Checking

In diagnostic checking, we need to test model adequacy by inspecting whether or not the
assumptions of the model hold. The general assumption is that {:} is white noise. Therefore,
model diagnostic checking is achieved via meticulous examination of residual series {e:}. To
ensure that the errors are normally distributed, one would create a histogram of standardized
residuals and compare the same with standard normal distribution. The assumption that random
shocks have zero mean and constant variance can be tested using a residuals plot. To test if the
residuals are roughly white noise, we calculate the sample ACF of the residuals to determine if
they are all statistically insignificant. The three-stage UBJ procedure is iterative in nature.
Estimation and diagnostic-checking stages offer warning indications when, and in what
manner, a model must be reformulated. It is persisted in to re-identify, re-estimate, and recheck

until a model is obtained satisfactory by a variety of criteria.
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xiii.  Q-Q Plot

The quantile-quantile( g-q plot) graph is a visual technique for deciding whether a data set
follows some probability distribution or not, and whether two sets of data have been drawn from
the same population or not. Q-Q plots are especially convenient for checking if a data set is

normally distributed or if it follows some known distribution

xiv.  Correlogram

A correlogram is a graphical plot of the autocorrelation function (ACF) for a time series
against values of lags. It provides a measure of correlation between observations at various
time lags. It is useful to detect patterns, autocorrelation, seasonality, and whether residuals are

like white noise (no large autocorrelations).

xv.  Histogram

A histogram displays the distribution of the residuals by frequency, KDE gives a smoothed
estimate of the density, and the standard normal curve plots on top to compare the

distribution of the residuals to a normal distribution.

xvi.  Ljung-Box Test
The Ljung-Box test is a statistical test to see if a time series has significant autocorrelation (i.e.,
whether future values depend on past values). The test can be used to test if the residuals
(errors) of a model are white noise or if there is still structure that the model has failed to

explain. The test provides a p-value, and based on this, conclusions can be made:

If p-value > 0.05, then the residuals are independent (no significant autocorrelation), the model

adequately captures the time series structure and no significant patterns are left in the residuals.

55 SEASONAL AUTOREGRESSIVE MOVING AVERAGE (SARIMA)

Time series data are non-stationary, i.e., their statistical characteristics (mean, variance,
autocorrelation) vary over time. AR, MA, and ARMA models presume stationarity, and hence
cannot be used for non-stationary series directly. To deal with non-stationary data, one usual
method used is differencing, which converts the series to a stationary form by calculating the

difference between two consecutive observations. This is achieved by subtracting the last value
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from the present value:
Zt_Zt—lz (]_B)Zt

where B is the backward shift operator such that BZ: = Z;—1 . If necessary, this differencing
can be applied multiple times until stationarity is achieved. After differencing d times, an
ARMA (p, q) model can be fitted to the transformed data. The resulting model is called ARIMA
(p, d, g), where:

p is the order of the autoregressive (AR) process,

d is the number of differences applied to achieve stationarity,

q is the order of the moving average (MA) process.

Mathematically, an ARIMA (p, d, g) model is expressed as:
@(B)(1 — B)iZ: = 6(B)e:

where:

@ (B) =1- 91B - @2B2 -...- 9, Br represents the AR component.

0(B) = 1—-61B - 6:B% -...- 6,B4 represents the MA component.

(1 — B)4applies dth order differencing.

& is a white noise process with mean 0 and constant variance o2

Incorporating seasonality :

Most real-time series are seasonal, i.e., they have cycles that recur at fixed intervals s (e.g.,
monthly data with s =12 for an annual cycle). SARIMA (Seasonal ARIMA) is an extension of

ARIMA that adds seasonal terms to capture cycles recurring every s time periods.

A SARIMA (p, d, g) x (P, D, Q)_s model accounts for both non-seasonal and seasonal

components, where:
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P is the order of the seasonal autoregressive, this term represents the relationship, especially at
seasonal lags, between the series' past values and present

D is seasonal differencing order, this part covers the differencing that is required to remove
seasonality from the series, similar to that of non-seasonal differencing.

Q is the seasonal moving average order, this component replicates the relationship that there is
between the current value and the seasonal lags of the residual errors

s is the seasonal period

The mathematical expression of SARIMA model can be stated as :
@(B)®(Bs) (1 — B)4(1 — B5)PZ; = 6(B)O(BS) &

where:

@(B)=1- @1B - §2B2 -...- @,B?

6(B) = 1—61B - 6;B2 -...- 6,B4

®(Bs) =1- ®1Bs - @B%s -...- ,BPs

O(B%) =1—01Bs - O3B -...- O¢B%

(1 — B)4 applies non-seasonal differencing d times.
(1 — Bs)P applies seasonal differencing D times.

&: IS a white noise process.

This multiplicative model retains both short-term (non-seasonal) and long-term (seasonal)
relationships in time series data, and hence SARIMA is a very effective method for forecasting

data with trend and seasonal variations.

Dept of Mathematics and Statistics, St. Teresa’s College (Autonomous), Ernakulam



TIME SERIES ANALYSIS OF RAINFALL IN KERALA

Data collection

Transformation

Identify model
(stationary or
non stationary?)

Differencing

Diagnostic
checking (Is the
model adequate?)

Choosing the best model ]

!

[ Use model for forecasting ]

figure 5.1 Steps involved inforecasting using SARIMA model

56 HOLT WINTERS EXPONENTIAL SMOOTHING TECHNIQUE

Holt’s method can be extended to deal with time series which contain both trend and seasonal
variations.Holt-Winters can be in both additive ~and  multiplicative forms depending on
the exact nature of the time series data.. Let L¢, T+, I.denote the local level, trend and seasonal
index, respectively at time t.
The interpretation of it depends on whether seasonality is thought to be additive or
multiplicative. In the additive case I, y. — I is the deseasonalized value, while in the
multiplicative class it is y:/I:. The values of the 3 quantities L:, T, I; all need to be estimated
and so we need 3 updating equations with three smoothing parameters, say «, y and J. As before
the smoothing parameters are usually chosen in the range (0, 1). The form of the updating
equations is again intuitively plausible.
Suppose the seasonal variation is multiplicative. Then the (recurrence form) equations for
updating L¢, T+, I: when a new observation y; becomes available are

Li=a(yelli—s )+ (1-a) (Li—1 +Te-1)

Te=y(Le—Le—1)+ (Q-y) Te1

Ie=6(yelLe)+(1-6)Ie—s
and the forecasts fromtime (t) are then,

yAt+h: (Lt + hTt) I—s+n forh=1.2....... S
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where s denotes the seasonal period ( For example: s = 4 for quarterly data and 12 for monthly
data ). If the seasonal variation is additive, the equations for updating L¢, T, I: when a new
observation y; becomes available are

Le=a(ye-Ie—s )+ (1-a) (Le-1 +Te-1)

Te=y(Le—Le—1)+ (1-y) Te1

Ie=6(ye-Le)+(1-6) I

and the forecasts fromtime (t) are then

yl\t+h = (Lt + hTt) Ti—s+n forh= 1,2, oS
For starting values, it seems sensible to set the level component Lo , equal to the average
observation in the first year that is,

S
Lo= Z B%5
t=1
where s is the number of seasons. The starting values for the slope component can be taken

fromthe average difference per period between the first and second-year averages. That is,

gz oy @ y)
_t=s+1 t=1 t

TO= S ~ s

Finally, the starting value of S| can be calculated after allowing for a trend adjustment,

as follows:
lo=(yx— (k-1) To) / 2 ( multiplicative)
lo= (yi- (Lo + (k-1) T0)/2) (additive)
Where k=1, 2 .......s. Thiswill lead to (s) separate values for Io, which is what is required to

gain the initial seasonal pattern.
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57 PROPHET MODEL

The Prophet model is a time series model, which was revealed by its creators, Taylor and Letham
(2017) of the Facebook data science team. It is an open-source and Python and R- supported
forecasting tool applied in forecasting. Although Facebook Prophet provides yearly, monthly,
and daily forecasts in non-linear data, it also incorporates holidays as specified. It can pre-
process data. The following equationisused to definethe process of integrating

the components:

y(t) =g()) +s(t) +h(t) + e
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Additivity y(t) in time series data trends are denoted by g(t), seasonality by s(t), holiday
impact by h(t), and model error &; in the Regressive Model. The model is built with the
python-based fbprophet API and takes only two inputs: the target variable to be forecasted,

which is denoted as "y," and the timestamp, which is marked as "ds".

@ a y

Data Preprocessing,Preparation
Dataset |==—="| and Formatting
L ;
-
Decomposing Timeseries dataset Weekly

: ) : \\4‘[ Monthly ]

| Yearly l
Building Model

%

.

J

Forecasting

figure 5.2 Steps involved inforecasting using prophet model

The main process in prophet is:

1. Data Preprocessing: This was the part where data cleaning and parameter choice for analysis
was taken into account.

2. Time Series Creation and Decomposition: This is where the use case associated with analysis
was taken into account. These processes had required sub-factors like daily, weekly, monthly,
and yearly choices.

3. Model Building: This step involves building a model for data prediction from chosen factors.
4. Prediction: The last step was predicting the performance of the model using testing data.

A time series decomposition is a significant task that helps in comprehending its very essence. It
facilitates easier analysis and prediction of intricate time series with latent components like the
trend, seasonal components, and periodic components. Two years of forecasting and just two
variables are needed for the Python Prophet. The Facebook (FB) Prophet is the latest tool that
has proved to have superior prediction accuracy. The Python fbprophet library is utilized to
implement the Prophet approach on the dataset. Since Prophet is univariate, data was pre-cleaned

to have date only and dependent factors.
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CHAPTER 6

RESULTS AND DISCUSSION

This chapter discusses a comparative study of time series modeling and forecasting of monthly
rainfall of Kerala using SARIMA, Holt-Winters Exponential Smoothing forecasting and
Prophet model. The data comprises 174 observations from July 2010 to December 2024.

6.1 EXPOLATORY DATA ANALYSIS

6.1.1 Descriptive Statistics

Table 6.1 Descriptive Statistics

count 174.000000
mean 236.926437
std 230.067491
Min 0.300000
25% 47.350000
50% 168.050000
75% 377.425000
max 1041.100000

6.1.2 Time Series plot

Monthly Rainfall in Kerala

—— oOriginal Data
1000 +

2010 2012 2014 2016 2018 2020 2022 2024
Year

figure 6.1 Time series plot
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6.1.3 Time Series Decomposition

Seasonal decomposition is performed for the evaluation of trend, seasonality and random

components. From figure 6.2 it is clearly visible that it shows seasonality.

— ori
800
600
400
200
0

2010 2012 2014 2016 2018 2020 2022 2024

ginal
300 — Trend
250
200

2012 2014 2016 2018 2020 2022 2024

—— Seasonal |
200 v
0
-200

2010 2012 2014 2016 2018 2020 2022 2024

400 — Residual
200 1
o
-200

2012 2014 2016 2018 2020 2022 2024

figure 6.2 Time Series Decomposition

Original Series (Top Panel): This plot represents the actual observed time series data. It shows
significant seasonal fluctuations, with peaks and troughs occurring at regular intervals, which

is typical of rainfall data.

Trend Component (Second Panel): This represents the long-term trend in the data. It smooths
out short-term variations to show whether the overall rainfall levels are increasing, decreasing,
or remaining stable. From the plot, the trend shows some fluctuations but generally appears to

rise around 2018-2022 before slightly stabilizing.

Seasonal Component (Third Panel): This captures repeating seasonal patterns in the data. The
regular peaks and troughs suggest strong seasonality, which is expected in rainfall data due to

monsoon effects.

Residual Component (Bottom Panel): This represents the remaining variation in the data after
removing the trend and seasonal components. It consists of irregular, random fluctuations that

cannot be explained by the trend or seasonality alone.
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6.2 MODELING AND FORECASTING OF RAINFALL USING SARIMA
MODEL

figure 6.1 depicts the time series plot of monthly rainfall data. It is visible that there is
seasonality in the data. The visual inspection alone is not enough to specify that the changes in
the mean are statistically significant. So, to decide ACF and PACF is plotted. figure 6.3 and
figure 6.4 shows ACF and PACF.
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figure 6.3 ACF plot of time series data

1 oo Partial Autocorrelation Function (PACF)
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figure 6.4 PACF plot of time series data

The figure 6.4 indicates that the ACF fails to die out rapidly towards zero. Rather than dying
down along the first several lags, the graph displays a slow decrease in the size of ACF values,

which is a typical pattern for a non-stationary series.

Now the seasonal index for various seasons can be obtained by ratio to moving average method.
From figure 6.5 it is obtained the seasonal indices for the data which shows the maximum
rainfall is received during July and minimum rainfall is received during the month of February

followed by January.
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Table 6.2 Seasonal Indices

Month Seasonal Indices
January 0.074224
February 0.056217
March 0.173290
April 0.514927
May 0.851742
June 2.184687
July 2.475431
August 2.072198
September 1.335291
October 1.266072
November 0.764395
December 0.231526

Histogram of Monthly Average Rainfall
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figure 6.5 Plot of Seasonal Indices

The seasonal behaviour of monthly data indicates the presence ofa seasonal component.

Ho = Data is stationary

H1 = Data is non — stationary
On performing the ADF test we get,

Table 6.2 ADF test result of non stationary data

Dickey -Fuller -2.2482811418475026

p-value 0.18919088296251468
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Since p-value is less than 0.05, we reject the null hypothesis and the data is non stationary. So,
perform seasonal differencing to make it stationary by taking the difference between a value
and a value with lag S=12 for the transformed data. That is, the seasonal difference is x; =

Xt — xt—12 . The time series plot for the seasonally differenced data is shown in the figure 6.6.

Seasonally Differenced Monthly Rainfall in Kerala

600 Seasonally Differenced Data

400

200

-200

Seasonal Differenced Rainfall

-400

-600

T T T T T T T
2012 2014 2016 2018 2020 2022 2024
Year

figure 6.6 Plot of seasonally differenced monthly rainfall in Kerala

From the seasonal differenced figure 6.6 it is evident that the seasonal behaviour is removed

from the series. Now again plot the seasonal differenced ACF and PACF.

ACF plot of Seasonally differenced data
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figure 6.7 ACF plot of seasonally differenced data
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PACEF plot of Seasonally differenced data
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figure 6.8 PACF plot of seasonally differenced data
Augmented Dickey-Fuller (ADF) Test

To clarify whether the differenced series is stationary or not. ADF test is performed. The result
of the test is in table 6.3.

Table 6 .3 ADF test result of stationary data

Dickey-Fuller -4.272193193805211

p-value 0.0004961284892897813

Since p-value is less than 0.05, it is clear that the differenced data is stationary. No more
seasonal differencing is needed. Now D=1 and d=0 , to find the seasonal AR order (P) and the

seasonal MA order (Q) have to plot the ACF and PACF OF stationary data at seasonal lags.
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ACF of seasonally differenced data at seasonal lags

100 ACF of Stationary data at seasonal lags
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figure 6.9 ACF plot of seasonally differenced data at seasonal lags

PACF of seasonally differenced data at seasonal lags

PACF of Stationary data at seasonal lags
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figure 6.10 PACF plot of seasonally differenced data at seasonal lags

figure 6.9 and figure 6.10 shows the ACF and PACF of seasonally differenced data at seasonal
lags. From the above ACF and PACF of seasonally differenced data non seasonal AR order and
non- seasonal MA order is maximum p =2 and maximum g = 1, and also know that d = 0. From
the ACF and PACF of seasonally differenced data at seasonal lags maximum P = 8 and

maximum Q =4 and D = 1.

Thus, the possible time series models and their corresponding AIC statistics for the monthly
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rainfall data is :

Table 6.4 ARIMA models and their corresponding AIC values

NO. ARIMA(p,d,q) x (P,D,Q) AIC
1 ARIMA(0,0,0)(0,1,0)[12] 2134.775
2 ARIMA(L,0,1)(1,1,0)[12] 2061.382
3 ARIMA(0,0,0)(0,1,0)[12] 2132.785
4 ARIMA(1,0,0)(0,1,0)[12] 2127.286
5 ARIMA(1,0,0)(2,1,0)[12] 2020.292
6 ARIMA(0,0,2)(1,1,1)[12] 1869.696
7 ARIMA(1,0,0)(3,1,0)[12] 2000.908
8 ARIMA(L,0,0)(4,1,0)[12] 1977.604
9 ARIMA(1,0,0)(5,1,0)[12] 1977.012
10 ARIMA(1,0,0)(6,1,0)[12] 1973.856
11 ARIMA(1,0,0)(7,1,0)[12] 1975.440
12 ARIMA(0,0,0)(6,1,0)[12] 1986.306
13 ARIMA(2,0,0)(6,1,0)[12] 1973.343
14 ARIMA(2,0,0)(5,1,0)[12] 1977.366
15 ARIMA(2,0,0)(7,1,0)[12] 1975.095
16 ARIMA(2,0,1)( 6,1,0)[12] 1977.719
17 ARIMA(L,0,1)( 6,1,0)[12] 1974.084

According to minimum Akaike Information Criteria, ARIMA(0,0,2) x (1,1,1)[12] model is

found to be more appropriate. The parameter estimates for the modelare given inthe table 6.5.

Table 6.5 ARIMA(0,0,2)x(1,1,1)[12] model parameters

Parameter Coefficient Standard z P>||
Error

ma.L1 0.2664 0.069 3.866 0.000

ma.L2 0.0496 0.071 0.695 0.487

ar.S.L12 -0.0598 0.077 -0.773 0.440

ma.S.L12 -0.7638 0.079 -9.659 0.000

sigma2 1.762e+04 1429.577 12.325 0.000
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The fitted SARIMA model is :
(1 +0.0598 B12)(1 —B2) Z,= (1 —0.2664 B — 0.0496 B2 )(1 + 0.7638 B1% ) &
Diagnostic Checking

Diagnostic checking is a crucial step to ensure the reliability, effectiveness and validity of
statistical models. It helps to understand how precise the model is and to improve prediction

accuracy.

Q-Q Plot
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figure 6.11 Q-Q plot of residuals

The figure 6.11 depicts the quantile-quantile plot comparing the distribution of residuals with
the normal distribution. It is clear that the most of the residual values lie on the straight line ,

which indicates the residuals are approximately normally distributed.
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figure 6.12 Correlogram of residuals

The figure 6.12 shows the correlogram, examination of correlogram can be evidently seen that

all the lags die to zero means that there is no significant autocorrelation present in the data.
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Since all autocorrelations fall within the confidence intervals (shaded area), the residuals are

not significantly autocorrelated, indicating a good model fit.

Histogram plus estimated density

m Hist
- KDE
— N(O0,1)

figure 6.13 Histogram of residuals

The figure 6.13 shows the histogram of standardized residuals overlaid with the kernel density
estimate (KDE) and the standard normal distribution N(0,1). Since the histogram matches the

normal distribution curve (green line), the residuals are approximately normal.

Table 6.6 Ljung box test result

Test statistic p_value

15.748041 0.107076

Ho: There is significant autocorrelation inthe residuals
H1: There is no significant autocorrelation in the residuals

Table 6.6 indicates the Ljung box test result. Since the p-value (0.107) is greater than 0.05, we
fail to reject the null hypothesis. This means there is no significant autocorrelation in the

residuals.

Thus the diagnostic checking reveals that the fitted ARIMA (0,0,2) x (1,1,1)[12] model is
statistically adequate. Also, the model statisfies stationary and invertibility requirements. So

the model can be used to forecast the monthly Rainfall data.

In-sample forecast
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Now, the fitted time series model is used to do In-sample forecasting. In-sample forecsting is

done for the last year in the dataset that is from January 2024 — December 2024.

Table 6.7 In-sample forecast using the SARIMA model

Months Actual value(mm) Predicted value(mm)
Jan 13.0 32.9674
Feb 3.9 5.8867
Mar 46.8 40.4900
Apr 100.2 123.5940
May 152.7 204.2318
Jun 223.0 419.1762
Jul 588.7 548.3822
Aug 67.3 562.6908
Sep 333.1 179.8283
Oct 297.0 323.8057
Nov 268.6 186.3770
Dec 156.2 141.7653

Fitted Versus Actual values

The actual and fitted values are plotted in the figure 6.14. The red line shows the predicted

(fitted) values and blue line shows the actual values.

Actual vs Predicted Rainfall

— Rainfall
1000 - —— Pred_Rainfall

|
]

400

Rainfall

200 A

T T T T T T T T
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Year

figure 6.14 Fitted versus actual values using the SARIMA model.
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Forecasting of rainfall using the SARIMA model

The model can be used for forecasting. The rainfall from January 2025 to December 2026 is

forecasted using the SARIMA model fitted. The forecasted values are computed and plotted

(Table 6.8 and figure 6.15). The green dotted line indicates the forecasted rainfall.

Table 6.8 SARIMA model forecast

Months | Forecasted | LCL UCL Months | Forecasted | LCL UCL
Values(mm) | (mm) | (mm) Values(mm) | (mm) (mm)

Jan 44.9081 0 290.73 | Jan 24.1579 0 290.41
2025 2026

Feb 11.8728 0 268.05 | Feb 8.4641 0 274.49
2025 2026

Mar 42.2341 0 302.76 | Mar 42.5078 0 309.19
2025 2026

Apr 115.4348 0 374.71 | Apr 114.5235 0 381.17
2025 2026

May 195.1394 0 452.46 | May 192.6009 0 458.96
2025 2026

Jun 386.3188 101.35 | 636.84 | Jun 376.5499 91.4913 | 643.53
2025 2026

Jul 605.3150 329.08 | 864.61 | Jul 604.3212 318.9825 | 871.07
2025 2026

Aug 475.5263 169.79 | 705.31 | Aug 451.1083 160.2971 | 712.39
2025 2026

Sep 309.4874 35.24 | 570.76 | Sep 310.8998 25.0732 | 577.16
2025 2026

Oct 300.6518 25.31 | 560.83 | Oct 300.4334 25.2879 | 567.28
2025 2026

Nov 200.4659 0 465.49 | Nov 204.5414 0 471.82
2025 2026

Dec 77.3011 0 342,90 | Dec 82.0205 0 349.21
2025 2026

Dept of Mathematics and Statistics, St. Teresa’s College (Autonomous), Ernakulam




TIME SERIES ANALYSIS OF RAINFALL IN KERALA

Actual vs Predicted vs Future Forecasted Rainfall
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figure 6.15 A plot of forecasted values using SARIMA model

6.3 MODELING AND FORECASTING OF RAINFALL USING HOLT-
WINTERS METHOD

Here Holt Winters Forecasting procedure is used to forecast rainfall. Now table 6.9 shows the

parameter estimates of the model.

Table 6.9 Holt Winter’s model parameters

Parameter Parameter Estimates
Alpha 0.0401474

(Level)

Gamma 0.0393733

(Trend)

Delta 0.0677946

(Season)
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Fitted Holt Winters Additive model is :
L= 0.0401474(y: - I ) + ( 1- 0.0401474) ( Le—y + Te—1)
T = 0.0393733 (L:— Le—1 ) + (1- 0.0393733 ) Ty
I.= 0.0677946 (y:- L) + (1- 0.0677946 ) I._,

Diagnostic Checking

Diagnostic checking is a crucial step to ensure the reliability, effectiveness, and validity of
statistical models. It helps to understand how precise the model is and to improve the prediction

accuracy.

Normal Q-Q Plot of Standardized Residuals

a9
3
> -
1
o

Ordered Values

—2 —1 o 1 2
Theoretical quantiles

figure 6.16 Q-Q plot of residuals

The figure 6.16 depicts the Q-Q plot , it is clear that the most of the residual values lie on the

straight line, which indicates that residuals are approximately normally distributed.

(liooorrelogram(Autocorrelation Plot) of Residuals
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figure 6.17 Correlogram of residuals
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The figure 6.17 shows the correlogram , from the examination of correlogram it can be
evidently seen that all the lags die to zero means that there is no significant autocorrelation

present in the data.

Histogram with KDE and Standard Normal Overlay
1

KDE
m— N(O,1)

Hist
0.8

Density

0.2

|ﬁ2|

Standardized Residuals

figure 6.18 Histogram of residuals

The figure 6.18 shows the histogram of standardized residuals. Since the histogram matches

the normal distribution curve, the residuals are approximately normal.

Table 6.10 Ljung box test result

Test statistic p_value

10.759955 0.376523

Ho: There is significant autocorrelation inthe residuals
H1: There is no significant autocorrelation in the residuals

Table 6.10 indicates the Ljung box test result. Since the p-value (0.107) is greater than 0.05,
we fail to reject the null hypothesis. This means there is no significant autocorrelation in the

residuals.

Thus from the diagnostic checking it is evident that the fitted Holt-Winters model is

statistically adequate. So, the model can be used to forecast the monthly rainfall of Kerala.
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In-sample Forecasting

Now the fitted time series model is used to do In-sample forecasting. In-sample forecasting is

done for the last year in the dataset that is from January 2024 to December 2024.

Table 6.11 In-sample forecasting using Holt winter’s model

Months Actual value(mm) Predicted value(mm)
Jan 13.0 90.7842
Feb 3.9 86.5774
Mar 46.8 112.3429
Apr 100.2 193.0212
May 152.7 303.0725
Jun 223.0 652.8139
Jul 588.7 642.3624
Aug 67.3 590.6612
Sep 333.1 406.5909
Oct 297.0 371.9924
Nov 268.6 220.7777
Dec 156.2 123.1724

Rainfall: Training, Actual, and Predicted Data

=== Training Data
1000 =—= Actual

Predicted
800 ﬂ

I

>
Date

Rainfall

figure 6.19 Fitted versus actual values using the Holt winter s exponential smoothing

technique

Dept of Mathematics and Statistics, St. Teresa’s College (Autonomous), Ernakulam



TIME SERIES ANALYSIS OF RAINFALL IN KERALA

Fromfigure 6.19 it given that green lines are the training data, blue line is the actual testing

data and orange line indicated testing predicted data.

Forecasting of rainfall using Holt-Winters model

Rainfall from January 2025 to December 2026 is forecasted using the model fitted.

Table 6.12 Holt winter’s model forecast

Months | Forecasted | LCL UCL Months | Forecasted | LCL UCL
Values(mm) | (mm) (mm) Values(mm) | (mm) (mm)

Jan 104.8621 0 241.71 | Jan 114.7331 0 279.02
2025 2026

Feb 100.6553 0 228.45 | Feb 140.4981 0 267.54
2025 2026

Mar 126.4208 0 202.89 | Mar 221.1770 0 388.93
2025 2026

Apr 207.0991 0 34417 | Apr 331.2282 0 393.04
2025 2026

May 317.1503 0 473.64 | May 680.9696 0 788.32
2025 2026

Jun 666.8918 101.35 | 687.84 | Jun 670.5182 91.4913 | 844.34
2025 2026

Jul 604.7391 329.08 | 864.61 | Jul 618.8170 318.9825 | 817.84
2025 2026

Aug 420.6687 169.79 | 815.19 | Aug 434.7466 160.2971 | 512.39
2025 2026

Sep 386.0702 35.24 | 560.93 | Sep 400.1481 25.0732 | 542.22
2025 2026

Oct 243.8556 25.31 | 593.38 | Oct 257.9335 25.2879 | 367.82
2025 2026

Nov 137.2503 0 465.49 | Nov 151.3281 0 271.18
2025 2026

Dec 118.9400 0 423.80 | Dec 133.0179 0 249.01
2025 2026
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Table 6.12 is the forecasted values and its LCL and UCL of rainfall for January 2025 to
December 2026

Rainfall: Training, Actual, Predicted, and Forecasted Data (2025-2026)

== Training Data
1000 == Actual
Predicted
== Forecast (2025-2026)

800 l

»
U IALRRATAL LD

Rainfall

figure 6.20 A plot of forecasted values using Holt winter’s exponential smoothing technique

The figure 6.20 is the plot of forecasted values using Holt Winter’s model.

6.4 MODELING AND FORECASTING OF RAINFALL USING
PROPHET MODEL

Here Prophet model is used to forecast the rainfall from January 2025 to December 2026.
Diagnostic checking

Normal Q-Q

Sample Quantiles
o

-2 4

-2 =1 0 1 2
Theoretical Quantiles

figure 6.21 Q-Q plot of residuals
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Itis clear from the figure 6.21 most ofthe residual values lie onthe straight line, which indicates

the residuals are approximately normally distributed.

Correlogram of Residuals
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figure 6.22 Correlogram of residuals

Fromthe examination of correlogram in figure 6.22 can be evidently seenthat all the lags die

to zero means that there is no significant autocorrelation present in the data.

Histogram plus estimated density

m Hist
— KDE
0.4" A —— N(O,l)

figure 6.23 Histogram of residuals
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In the figure 6.23, the histogram matches the normal distribution curve (green line), the

residuals are approximately normal.

Table 6.13 Ljung box test result

Test statistic p_value

10.448435 0.402069

Ho: There is significant autocorrelation inthe residuals
H1: There is no significant autocorrelation in the residuals

Table 6.13 indicates the Ljung box test result. Since the p-value (0.107) is greater than 0.05,
we fail to reject the null hypothesis. This means there is no significant autocorrelation in the

residuals.

Thus fromthe diagnostic checking it is evident that the fitted Prophet model is statistically

adequate. So, the model can be used to forecast the monthly rainfall of Kerala.

In-sample Forecasting

Now the fitted time series model is used to do In-sample forecasting. In-sample forecasting is

done for the last year in the dataset that is from January 2024 to December 2024.
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Table 6.14 In-sample forecast using Prophet model

Months Actual value(mm) Predicted value(mm)
Jan 13.0 10.5111
Feb 3.9 10.7698
Mar 46.8 35.8474
Apr 100.2 108.9124
May 152.7 204.9871
Jun 223.0 514.3679
Jul 588.7 568.2219
Aug 67.3 458.1893
Sep 333.1 317.6038
Oct 297.0 285.2710
Nov 268.6 173.2909
Dec 156.2 48.2215

Forecasting of rainfall using Prophet model

Rainfall from January 2025 to December 2026 is forecasted using the model fitted.

Table 6.15 Prophet model forecast

Months | Forecasted | LCL UCL Months | Forecasted | LCL UCL
Values(mm) | (mm) (mm) Values(mm) | (mm) (mm)

Jan 12.9929 0 182.186 | Jan 15.2341 0 179.800

2025 2026

Feb 29.0089 0 188.206 | Feb 26.7806 0 197.684

2025 2026

Mar 125.7613 0 290.795 | Mar 127.9675 0 277.950

2025 2026

Apr 164.7044 0 322.764 | Apr 155.7066 0 316.843

2025 2026

May 481.5497 11.8124 | 637.446 | May 474.5642 311.296 | 644.044

2025 2026
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Jun 580.3397 322.800 | 738.761 | Jun 582.5591 423.187 | 743.535
2025 2026
Jul 521.7161 427.299 | 671.773 | Jul 533.1738 373.395 | 705.078
2025 2026
Aug 277.7921 259.505 | 437.007 | Aug 268.6594 113.836 | 437.665
2025 2026
Sep 297.4294 116.657 | 459.532 | Sep 299.0927 135.202 | 450.107
2025 2026
Oct 167.6165 137.067 | 334.067 | Oct 165.6124 4.857 324.094
2025 2026
Nov 43.7777 9.649 196.812 | Nov 42.2809 0 199.794
2025 2026
Dec 8.7047 0 172.672 | Dec 22.45 0 61.987
2025 2026

Table 6.15 is the forecasted values and its LCL and UCL of rainfall for January 2025 to
December 2026
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figure 6.24 A plot of forecasted values using Prophet model

The figure 6.24 is the plot of forecasted values using Prophet model.
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6.5 COMPARISOMN BETWEEN SARIMA, HOLT-WINTERSAND
PROPHET MODEL

To determine the best model, the performance metrices should be compared and considered.
Here the Mean Absolute Error (MAE) and Root Mean Square Error were provided for the three

models.
Table 6.16
SARIMA Model Holt Winter’s Model Prophet Model
MAE 103.16 113.23207798875812 85.54657338176848
RMSE 161.4308216265108 164.12057903418 147.8211734743146

From table 6.16 it is evident that Prophet model has the lower MAE and RMSE value compared

to SARIMA and Holt Winter’s model. That is Prophet model appears to be perform better than
the other model.
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CONCLUSION

Three time series models were used for the forecasting of monthly rainfall data of Kerala for
the year January 2025 to December 2026.The historical rainfall data of Kerala from January
2010 to December 2024 were analysed and forecasted using SARIMA, Holt winter’s
exponential smoothing technique and Prophet model. Prophet model was concluded as the best
model with a low RMSE of 147.821 and MAE of 85.546. SARIMA model had a RMSE of
161.430 and MAE of 103.16 and Holt winter’s exponential smoothing had a RMSE of 164.120
and MAE of 113.232. All the three models offer viable forecasting solutions, the Prophet model
is recommended for its superior accuracy and flexibility, particularly for datasets with
seasonality or missing values. However, if computational efficiency is critical, Holt-Winter’s
Exponential Smoothing could be considered for simpler datasets. For data with clear statistical
properties and stationarity, SARIMA remains a robust option but may require significant effort

in tuning parameters.

Even though prophet is the best fitted model, we chose SARIMA as our best model, due to the
prophet’s black box approach. SARIMA have strong theoretical foundation and it also provides
explicit control over seasonal and non-seasonal differencing, AR, and MA components,
allowing for greater transparency in model behavior and the parameters can be explicitly
analysed. Unlike Prophet is a black-box approach due to its automated detection of seasonality,
trends, and holiday effects, While Prophet simplifies forecasting by automating many aspects,
it may not always align well with domain-specific requirements, making SARIMA a preferred

choice when interpretability and control are essential.

From the analysis of the 174 months of past rainfall data and the new forecasted data it is
evident that there is a change in the rainy months. June was the most raining month. However,
in the current dataset, the trend has shifted, July emerges as the most rainy month followed by
August. This shift is visible from 2018 and it also indicate a changing climate pattern or other

external factors influencing the rainfall distribution over the years.

In conclusion, this study uncovers past rainfall patterns in Kerala and hints at exciting
possibilities for more research. By using advanced models, gained insights into historical data,
underlining the importance of ongoing climate and environmental studies. This research not
only tells about the past but also opens doors for future exploration in the realm of climate

science.
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