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CHAPTER 1 

INTRODUCTION 

Rainfall is vital for all life on Earth and plays a significant role in ecosystem processes, crop 

production, and hydroelectric energy. Being the major source of water, rainfall has a critical 

impact on water resource management, agricultural planning, flood control, disaster 

preparedness, tourism, transportation, and environmental monitoring, among others. 

Knowledge of rainfall patterns and trends can improve decision-making in such areas. Rainfall 

distribution and intensity vary between regions based on latitude, elevation, and atmospheric 

conditions 

Kerala's unique geography and topography, with the Western Ghats to the east and the Arabian 

Sea to the west, create significant rainfall variability across the state. The orographic effect of 

the Western Ghats results in heavy rainfall on the windward side during the Southwest 

Monsoon, while coastal areas receive more rainfall due to proximity to the sea. High-altitude 

regions like Wayanad, Idukki, and Munnar record more rainfall compared to lowlands, and the 

state's diverse geography leads to microclimates with localized rainfall patterns. 

Kerala is the entry point of the Indian subcontinent summer monsoon. The major rainy seasons 

of the state are the southwest monsoon (June–September) and the northeast monsoon (October– 

November) (Raj & Azeez, 2012). The analysis of rainfall data from a century trend shows a 

statistically significant (99%) decreasing trend in many areas of Kerala, especially in January, 

July, and November (Nair et al., 2014). Climate change is now an undeniable phenomenon, 

leading to catastrophic weather occurrences globally. Numerous factors determine a region's 

climate, such as latitude, height, pressure and wind patterns, distance from the sea, ocean 

currents, and terrain. Differing rainfall patterns and unexpected heatwaves rank among the most 

severe impacts of climate change (Varghese & Vanitha, 2020). A historical analysis of rainfall 

in Kerala, carried out by the Indian Meteorological Department (IMD), shows changes in 

Kerala's rainfall pattern. The state records highest rainfall during July followed by June. 

There has been a visible decrease in southwest monsoon rainfall, while post-monsoon rainfall 

has increased. The reduction in rainfall is most pronounced during June and July, whereas 

August and September have been relatively consistent during the monsoon season 

(Krishnakumar et al., 2009). Rainfall trends also differ from one region to another, with a rising 

trend noted in northern and eastern stations, whereas southern and western stations show a 

declining trend (Jagadeesh & Anupama, 2014). The occurrence of both Moderate Rain (MR) 
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and Heavy Rain (HR) events has decreased over Kerala, though some grids in the eastern region 

of the state have experienced a considerable rise in HR events during 1971-2019 (Surendran et 

al., 2020). 

A number of research studies have investigated rainfall analysis and forecasting through 

different approaches. Construction of a precise forecasting system continues to pose problems 

for researchers, one of the problems being how to process past data and forecast future trends. 

Time series modeling presents a possible solution. For example, rainfall forecasting in Idukki 

district has been made with models like Autoregressive Integrated Moving Average (ARIMA), 

Artificial Neural Networks (ANN), and Exponential Smoothing State Space (ETS) (Kamath & 

Kamat, 2018). Further, artificial intelligence methods have also proven to predict Kerala's 

monsoon seasons with little prediction error (Dash et al., 2018). Comparative analyses using 

models such as SARIMA, Facebook Prophet, and Long Short-Term Memory (LSTM) networks 

have also been implemented (Sulasikin et al., 2021). 

Time Series Analysis of Rainfall in Kerala, in its desire to determine the rainfall trends and 

patterns in Kerala, as well as predict rainfall in the future, sought to fill this need. This study 

helps to know about Kerala's shifting patterns of rainfall. Raw data for the study were obtained 

from the official website of the Department of Economics and Statistics, Thiruvananthapuram, 

and the Kerala Water Resource Irrigation System. Monthly rainfall data for the period from 

July 2010 to December 2024 were employed for predicting patterns of rainfall during January 

2025 to December 2026. 

1.1 OBJECTIVES 

1. To perform EDA(Exploratory Data Analysis) to find pattern and trend of rainfall. 

2. To model and forecast rainfall in Kerala using Seasonal ARIMA (Auto Regressive 

Integrated Moving Average). 

3. To model and forecast rainfall in Kerala using Holt Winter’s Exponential smoothing 

technique 

4. To model and forecast rainfall in Kerala using Prophet model 

5. To compare the forecast of Seasonal ARIMA, Holt Winter’s Exponential smoothing 

technique and Prophet model. 
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CHAPTER 2 

REVIEW OF LITERATURE 

This chapter shows the results from the related research that analysed the various Rainfall 

datasets and made prediction using various statistical methods, data mining techniques, 

machine learning algorithms and so on. 

Krishnakumar et al. (2009) studied Kerala's 20th-century trends in rainfall by analyzing 1871- 

2005 data based on Mann-Kendall statistics and linear trend analysis. A significant reduction 

in southwest monsoon rainfall, particularly in June and July, was observed, affecting 

hydropower generation and water supply during the summer season. In contrast, post-monsoon 

rainfall increased, and, if continued, would be beneficial for plantation crops. 

Raj and Azeez (2012) investigated rainfall trends in the Bharathapuzha River basin, Kerala, 

India. From 34 years of rainfall data at 28 rain gauge stations, they analyzed patterns through 

Mann-Kendall statistics and wavelet analysis. The study revealed a notable decrease in annual, 

southwest monsoon, and pre-monsoon rainfall in recent years, which was likely due to global 

climate fluctuations and local environmental changes. 

Jagadeesh and Anupama (2014) made a statistical and trend analysis of rainfall at the 

Bharathapuzha River basin. The 33-year study (1976–2008) indicated an increasing trend in 

southwest monsoon rainfall and annual rainfall at Eruthempathy and Malampuzha Dam, 

but northeast monsoon rainfall fell at all four stations. Sen's slope analysis placed 

Malampuzha Dam at having the highest year-to-year increase in rainfall (1.55 mm/year), and 

the maximum decrease was recorded by Thrithala (−5.80 mm/year). As a whole, the study 

recorded rising rainfall trends in the north and east and decreasing trends in the south and west, 

which is crucial information for managing future water resources. 

 

Nair et al. (2014) conducted the Spatio-temporal analysis of rainfall trends over a coastal state 

(Kerala) of India for the past 100 years. This research examines rainfall variability and trends in 

Kerala for the last 100 years, which show strong (99%) declining trends, especially in January, 

July, and November, possibly due to global climate anomalies, urbanization, and deforestation. 

Regional variation indicates more rainfall variability in  northern  and  southern  Kerala, 

with changing seasonal means and rising asymmetry in rainfall distribution, as revealed by the 

seasonality index (SI). 
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Dash et al. (2018) also did research on the forecasting of rainfall over Kerala, India, applying 

artificial intelligence methods. Their work addressed shifting monsoon trends in Kerala, and 

results showed that the state experienced declining seasonal and post-monsoon rainfall, together 

with rising deficits in rainfall years, potentially enhancing water shortage in the state. The 

research utilized artificial intelligence models and established that the Extreme Learning 

Machine (ELM) model, with a reduced error rate of 3.8729%, performed better than the Single 

Layer Feed-Forward Neural Network (SLFN) in predicting summer monsoon rainfall. 

 

Kamath and Kamat (2018) investigated time-series analysis and rainfall prediction for Idukki 

district, Kerala, based on a dataset obtained from Knoema, an open data website. Their work 

sought to compare the performance of different time-series models using January 2006 to 

December 2016 monthly rainfall data. The study applied ARIMA, Artificial Neural Network 

(ANN), and Exponential Smoothing State Space (ETS) models. Of these, ARIMA outperformed 

others, as was determined using Root Mean Squared Error (RMSE) and model fit criteria. 

 

Surendran et al. (2020) examined the effect of climate change on heavy rainfall occurrences in 

Kerala during June to September from 1901 to 2019. They compared heavy rainfall (HR ≥ 100 

mm) and moderate rainfall (MR between 5 mm and 100 mm) events, separating the period into 

two phases: 1901–1970 and 1971–2019. There was a notable declining trend in both MR (99% 

confidence level) and HR (95% confidence level) events, as well as a general decline in seasonal 

rainfall. Dekadal analysis showed a decrease in MR and HR events, especially in late July and 

mid-August, while HR events during early August had a notable rise (95%) in the second phase, 

which peaked in 2019 at 127 events. Although overall there has been a decline, some of the 

eastern regions saw an increase in HR events that triggered recent extreme rainfalls and 

landslides. 

 

Varghese and Vanitha (2020) implemented time-series-based rainfall forecasting analysis for 

Idukki district, Kerala, using data from Knoema (2006–2016). These authors compared ARIMA, 

ANN, and ETS model performances to conclude ARIMA was best, according to RMSE and 

model fit. 

 

Sulasikin and Nugraha (2021) studied the monthly rainfall forecasting with the Facebook Prophet 

model as a flood-mitigation effort in Central Jakarta. The researchers compared SARIMA, 

Facebook Prophet, and the LSTM models as rainfall predictors during a two-year period. Their 

findings revealed Facebook Prophet as the most effective model with the least MSE and RMSE. 



 5  TIME SERIES ANALYSIS OF RAINFALL IN KERALA 

Dept of Mathematics and Statistics, St. Teresa’s College (Autonomous), Ernakulam 

 

 

 

Facebook Prophet successfully forecasted high levels of rainfall for January and February 2021, 

indicating likely flood threats. These results highlight the value of the model for evidence-based 

flood mitigation policy and offer a benchmark for further research. 
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CHAPTER 3 

MATERIALS AND METHODOLOGY 

 
3.1 DATA COLLECTION 

The dataset utilized in this study comprises monthly rainfall measurements (in millimeters) for 

Kerala, spanning from July 2010 to December 2024. The data was sourced from the official 

website of the Department of Economics and Statistics, Thiruvananthapuram and Kerala Water 

Resource Irrigation System. 

 

 

3.2 METHODOLOGY 

The initial step in the analysis involved thoroughly examining the dataset. The primary 

objective of the study was to analyze rainfall patterns and trends in Kerala and forecast future 

rainfall using time series models. To begin, exploratory data analysis (EDA) was conducted to 

understand the dataset's characteristics. Subsequently, the SARIMA model, Holt-Winter’s 

Exponential Smoothing technique, and the Prophet model were applied for forecasting. Finally, 

the performance of these three models was compared by evaluating their MAE and RMSE 

values. 

 

 

3.3 TOOLS FOR ANALYSIS AND FORECASTING 

1. EDA(Exploratory Data Analysis) 

2. Seasonal ARIMA(Auto regressive Integrated Moving Average) 

3. Holt-Winter's Exponential Smoothening Technique 

4. Prophet model 
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3.4 TOOLS FOR COMPARISON 

 
1. Mean Absolute Error (MAE) 

 

The formula for MAE is:  

 

∑𝒏 |𝒚𝒊 − 𝒚^𝒊 | 

𝑴𝑨𝑬 =   𝒊=𝟏  

𝒏 

where, 𝑦𝑖 is the i-th observed value, 𝑦^𝑖 is the corresponding predicted value, 

n is the number of observations. 

 

 

2. Root Mean Squared Error (RMSE) 

 

The formula for RMSE is: 

∑𝒏 (𝒚𝒊 − 𝒚 ̂ 𝒊  ) 𝟐 

𝑹𝑴𝑺𝑬 = √
 𝒊=𝟏  

𝒏 

 
where, 𝑦𝑖 is the actual value for the i-th observation, 𝑦^𝑖 is the predicted value for the 

i-th observation, n is the number of observations. 

 

 

3.5 PYTHON 

In this study, Python is a high-level, versatile, and easy-to-read programming language. Python 

was used to do EDA to find hidden patterns of the data set and to forecast using SARIMA and 

Holt-Winter's Exponential Smoothening Technique and prophet model. 
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CHAPTER 4 

EXPLORATORY DATAANALYSIS (EDA) 

4.1 EXPLORATORY DATA ANALYSIS (EDA) 

It is the first step of data analysis process, it helps to understand the underlying structure and 

patterns of data. It also helps to understand the relationships within dataset. EDA can be also 

used to understand the quality of data, check null values, missing values etc. Using EDA after 

checking for null and missing values, next step is to summarize and visualize the data to 

understand it more. This may include calculating summary statistics such as mean, median, 

mode and standard deviation etc. Visualizing the data, decomposing the data to trend , seasonal 

and residual also include in this. 

4.2 DESCRIPTIVE STATISTICS 

Descriptive statistics summarize the key characteristics of a dataset, including its central 

tendency, variability, and distribution. Measures such as the mean, median, and mode represent 

the dataset’s central values, while standard deviation and quartiles help assess the spread of data 

and detect outliers or extreme values. Overall, descriptive statistics provide a comprehensive 

summary of the dataset, facilitating a better understanding of the data and ensuring accurate 

further analysis. 

4.3 TIME SERIES VISUALISATION 

Time series visualization refers to the graphical representation of data recorded at consecutive 

time intervals. Various techniques, including line plots, seasonal subseries plots, autocorrelation 

plots, histograms, and interactive visualizations, help analysts detect trends, patterns, and 

anomalies within the data. These visual tools play a crucial role in interpreting time-dependent 

data and making informed decisions. 

4.4 SEASONAL DECOMPOSITION 

 
Seasonal decomposition is a technique used to break down time series data into three 

components: trend, seasonality, and residual. This process helps in identifying whether the data 

exhibits seasonal patterns and understanding the overall trend. Recognizing these components 

aids in selecting an appropriate forecasting model and improving prediction accuracy. 
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Trend: Represents the long-term increase or decrease in data over time. 

 

Seasonal: Refers to a recurring and predictable pattern that repeats at regular intervals, such as 

monthly, weekly, or daily. Rainfall patterns are an example of seasonal behavior in time series 

data. 

Residual: The difference between the actual observed values and the predicted values. 

Residuals help evaluate how well the model fits the data. 

 

 

Overall, exploratory data analysis (EDA) serves as the initial and most critical step in data 

analysis. It helps identify missing or null values, understand data patterns, and determine the 

most suitable forecasting models to enhance prediction accuracy. 
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CHAPTER 5 

TIME SERIES ANALYSIS 

Time Series Analysis is a statistical process employed for analysis and interpretation of data at 

pre-specified intervals of time. It enables patterns, trends, seasonality, and intrinsic patterns in 

the underlying time-dependent data to be revealed, leading to predictions as well as analysis 

for future values. A time series is an interaction between a variable and time itself, measured 

over regular time periods like annual, monthly, weekly, daily, or hourly. Some examples of 

time series data are hourly temperatures, daily sales, and monthly production. Mathematically, 

a time series is defined by the function relationship 𝑌𝑡 = f(t), where 𝑌𝑡 is the value of the variable 

under consideration at time t. 

5.1 COMPONENTS OF TIME SERIES 

Trend(𝑻𝒕): The trend is the general long-run movement or tendency of the data over time. 

Icaptures whether or not the series follows a consistent rise, fall, or neither. Trends can be linear, 

with a steady rise or fall, or nonlinear, with more complicated fluctuations. 

Seasonality (𝑺𝒕): Seasonality refers to repeating cycles or variations occurring at regular times 

within a series of time data. These usually recur on annual, quarterly, monthly, or weekly cycles 

and are caused by seasonal changes, holidays, or business cycles. 

Cyclic variations (𝒄𝒕) : Cyclical variations are long-term fluctuations in a time series that donot 

have a fixed period such as seasonal patterns. These cycles generally last for a few years and are 

associated with economic or business cycles, capturing phases of growth and decline. 

Irregularity or Noise (𝑰𝒕) : Irregularity, alternatively referred to as noise or randomness, 

accounts for unexpected changes in the data that cannot be explained through trend, seasonality, 

or cyclical patterns. These fluctuations can be a result of random occurrences, errors in 

measurements, or unanticipated external forces, which increase the difficulty in observing 

underlying patterns within the time series. 

https://www.geeksforgeeks.org/what-is-a-trend-in-time-series/
https://www.geeksforgeeks.org/seasonality-detection-in-time-series-data/
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5.2 MATHEMATICAL MODELS FOR TIME SERIES ANALYSIS 

 
In time series analysis, there are supposed to be two models typically for the 

decompositions of a time series into its constituents. 

a) Additive Model: As per the additive model, decomposition of time series is carried out 

with the assumption that the impact of different components is additive. 

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 +𝐶𝑡 + 𝐼𝑡 

 
Where 𝑌𝑡is the time series value and 𝑇𝑡 , 𝑆𝑡 , 𝐶𝑡and 𝐼𝑡 stands for trend, seasonal variations, 

cyclical variations and irregular variations respectively. In this model 𝑆𝑡, 𝐶𝑡and 𝐼𝑡 are absolute 

quantities and can have positive or negative values. The model postulates that four elements of 

the time series are independent of one another. 

b) Multiplicative Model: Under the multiplicative model, the breakdown of a time series is 

made on the premise that the impacts of the four parts of the time series are not mutually 

independent. Under the multiplicative model, 

𝑌𝑡 = 𝑇𝑡 ∗ 𝑆𝑡 ∗ 𝐶𝑡 ∗ 𝐼𝑡 

 
In this model 𝑇𝑡 , 𝑆𝑡 , 𝐶𝑡and 𝐼𝑡 are not absolute amounts as in the case of the additive model. 

There are relative variations and are expressed as rates or indices fluctuating above or below 

unity. The multiplicative model can be expressed in terms of the logarithm. 

log𝑌𝑡 = 𝑙𝑜𝑔𝑇𝑡 + 𝑙𝑜𝑔𝑆𝑡 +𝑙𝑜𝑔𝐶𝑡 + 𝑙𝑜𝑔𝐼 

 

5.3 MEASUREMENT OF SEASONAL VARIATIONS 

Seasonal variation is measured in terms of an indicator, called a seasonal indicator. It's an normal 

that can be used to compare an factual observation relative to what it would be if there was no 

seasonal variation. 

(a) Method of simple averages 

 

(b) Ratio to Trend Method 

 

(c) Ratio to Moving average method 
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5.4 TIME SERIES MODELING 

5.4.1 BASIC DEFINITIONS 

i. Stationary Time series 

Stationary time series refers to series of observations where the mean, variance and the 

Autocorrelation remains constant over time. It is a time series data which exhibit a stable 

behaviour without trend and seasonality. 

ii. Non-stationary Time series 

Non-stationary time series refers to series of observation where the mean variance and the 

Autocorrelation varies over time. It is a time series data exhibit unstable behaviour with trend, 

seasonality and other patterns. Non-stationary data cannot be used for analysis. 

iii. Auto Correlation Function (ACF) 

Autocorrelation function in time series is a tool used to measure the correlation between a time 

series and its lagged value at different time intervals. ACF value of 1 or -1 indicate strong 

positive or negative autocorrelation. Patterns of ACF give idea about seasonality and other 

random behaviours. Stationarity can be assessed by ACF, ACF plots with lags dying to zero 

represents stationarity. The autocorrelation function of a stationary time series {𝑍𝑡}, ρ(k) at lag 

k is defined as the correlation at lag k between 𝑍𝑡 and 𝑍𝑡+𝑘. Thus the autocorrelation function 

at lag k is given by, 

ρ(k) =  𝛾(𝑘)  
𝛾(0) 

 

where γ(k) = Cov (𝑍𝑡 , 𝑍𝑡+𝑘) 

iv. Partial Autocorrelation Function (PACF) 

The Partial Autocorrelation Function (PACF) comes to test the immediate connection between 

two observations of a time series with further data effect accounted for. PACF employed to 

determine the MA parameter for SARIMA and ARIMA model. Partial autocorrelation 

function, as with the autocorrelation function, carries important information about the 

dependence structure of a stationary process. 
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In the context of time series, a large portion of the correlation between 𝑍𝑡 and 𝑍𝑡+𝑘can be due 

to the correlation these variables have with (𝑍𝑡−1, 𝑍𝑡−2, ...,𝑍𝑡−𝑘+1). The partial autocorrelation 

of lag k can be thought of as the partial regression coefficients kk in the representation. 

𝑍𝑡= ∅𝑘1𝑍𝑡−1+∅𝑘2 𝑍𝑡−2 +...+∅𝑘𝑘 𝑍𝑡−𝑘 +𝜀𝑡 

 

Thus the partial autocorrelation at lag k, ∅𝑘𝑘, measures the correlation between 𝑍𝑡and 𝑍𝑡−𝑘 

after adjusting for the effects of (𝑍𝑡−1, 𝑍𝑡−2, ..., 𝑍𝑡−𝑘+1). 

 

v. Augmented Dickey Fuller Test 

 
The ADF test is part of a type of test referred to as 'Unit Root Test', which is the correct procedure 

for testing a time series for stationarity. Augmented Dickey-Fuller (ADF) test is a popular 

statistical test applied to test if a specific time series is stationary or not. It is one of the most 

popular statistical tests used in the context of analyzing the stationarity of a series. It is testing 

the following two null and alternative hypotheses: 

𝐻0: The time series is non-stationary. 

𝐻1: The time series is stationary. 

Now, if the p-value from this test comes out to be less than a particular level (e.g. α = 0.05) 

then in such cases the null hypothesis is rejected and concludes that the time series is stationary. 

vi. Stationarity 

 
The ARIMA technique is suitable only for a stationary series of data. Stationarity means that the 

AR coefficients should meet certain requirements for an ARIMA model to be stationary. There 

is a reason why we need stationarity: otherwise, we could not obtain meaningful estimates of the 

parameters of a process. When p=0, we have a pure MA model or a white noise series. All white 

noise and pure MA models are stationary, and so there are no stationarity conditions to test. 

For an AR (1) or ARMA(1, q) process, the stationary requirement is that the absolute value of 

∅1 must be less than one: |∅1| < 1. 

For an AR(2) or ARMA(2, q) process, the stationary requirement is a set of three conditions: 

|∅2| < 1, and ∅1 − ∅2 < 1. 
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vii. Invertibility 

There is a second requirement that ARIMA models need to meet known as invertibility. This 

condition stipulates that the coefficients of the MA need to meet specific requirements. There 

is a rational basis for invertibility: a non-invertible ARIMA would mean that weights assigned 

to older Z observations do not decrease as we go back further in time, but rationality dictates 

that higher weight should be assigned to more recent observations. Invertibility guarantees that 

these outcomes persist. If q=0, then we have either a pure AR process or a white noise series. 

All white noise and pure AR processes are invertible and no additional checks are needed 

For an MA (1) or ARMA(p, 1) process, invertibility requires that the absolute value of θ1 must 

be less than one, |𝜃1|< 1, 𝜃1+𝜃2 < 1, and 𝜃1 − 𝜃2 < 1. 

 

viii. Auto Regressive (AR) Process 

A time series {𝑍𝑡} is said to be an autoregressive process of order p, abbreviated as AR(p) if it 

is a weighted linear sum of the past p values plus a random shock so that 

𝑍𝑡 =∅1𝑍𝑡−1+∅2𝑍𝑡−2 +...+∅𝑝𝑍𝑡−𝑝 +𝜀𝑡 

where {𝜀𝑡} denotes a purely random process with 0 mean and constant variance 𝜎2. Using the 

backward shift operator B, such that B𝑍𝑡= 𝑍𝑡−1 , the AR (p) model may be written more 

succinctly in the form, 

∅(B) 𝑍𝑡 = 𝜀𝑡 

 
where ∅(B) = 1 - ∅1B - ∅2𝐵2 -...- ∅𝑝𝐵𝑝 is a polynomial in B of order p. 

ix. Moving Average (MA) Process 

 
A time series {𝑍𝑡} is said to be a moving average process of order q, abbreviated as MA(q) if 

it is a weighted linear sum of the last q random shocks so that 

𝑍𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − 𝜃𝑞𝜀𝑡−𝑞 

where {𝜀𝑡} denotes a purely random process with 0 mean and constant variance 𝜎2 . Using the 

backward shift operator B the MA (q) model may be written in the form, 

𝑍𝑡 = θ (B) 𝜀𝑡 

where θ(B) = 1−𝜃1B - 𝜃2𝐵2 -...- 𝜃𝑞𝐵𝑞 is a polynomial in B of order q. 

 

 

x. Auto Regressive Moving Average Process (ARMA) 
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Mixed autoregressive moving average model with p auto regressive terms and q moving 

average terms is abbreviated as ARMA(p,q) is given by 

𝑍𝑡 − ∅1𝑍𝑡−1−∅2𝑍𝑡−2 -…- ∅𝑝𝑍𝑡−𝑝  = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − 𝜃𝑞𝜀𝑡−𝑞 

Using the backward shift operator B, the ARMA(p,q) can be written in the form, 

𝑍𝑡 − ∅1𝐵𝑍𝑡−∅2𝐵2𝑍𝑡 -…- ∅𝑝𝐵𝑝𝑍𝑡 = 𝜀𝑡 − 𝜃1𝐵𝜀𝑡 − 𝜃2𝐵2𝜀𝑡 − 𝜃𝑞𝐵𝑞𝜀𝑡 

∅(B) 𝑍𝑡 = θ (B) 𝜀𝑡 

where ∅(B) and θ (B) are polynomial in B of degree of order p and q respectively 

 

 

xi. Akaike Information Criteria (AIC) 

The Akaike Information Criterion (AIC) is a statistical metric used to evaluate and compare 

models in time series forecasting. It helps identify the best-fitting model by balancing goodness 

of fit and model complexity. 

The AIC is calculated using the formula: 

 

AIC=2k−2ln(L) 

 

where k represents the number of parameters in the model, and L is the maximum likelihood of 

the model. A lower AIC value indicates a better model, as it suggests a good trade-off between 

accuracy and simplicity. 

xii. Diagnostic Checking 

In diagnostic checking, we need to test model adequacy by inspecting whether or not the 

assumptions of the model hold. The general assumption is that {𝜀𝑡} is white noise. Therefore, 

model diagnostic checking is achieved via meticulous examination of residual series {𝜀𝑡}. To 

ensure that the errors are normally distributed, one would create a histogram of standardized 

residuals and compare the same with standard normal distribution. The assumption that random 

shocks have zero mean and constant variance can be tested using a residuals plot. To test if the 

residuals are roughly white noise, we calculate the sample ACF of the residuals to determine if 

they are all statistically insignificant. The three-stage UBJ procedure is iterative in nature. 

Estimation and diagnostic-checking stages offer warning indications when, and in what 

manner, a model must be reformulated. It is persisted in to re-identify, re-estimate, and recheck 

until a model is obtained satisfactory by a variety of criteria. 
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xiii. Q-Q Plot 

 
The quantile-quantile( q-q plot) graph is a visual technique for deciding whether a data set 

follows some probability distribution or not, and whether two sets of data have been drawn from 

the same population or not. Q-Q plots are especially convenient for checking if a data set is 

normally distributed or if it follows some known distribution 

 

xiv. Correlogram 

 
A correlogram is a graphical plot of the autocorrelation function (ACF) for a time series 

against values of lags. It provides a measure of correlation between observations at various 

time lags. It is useful to detect patterns, autocorrelation, seasonality, and whether residuals are 

like white noise (no large autocorrelations). 

xv. Histogram 

 
A histogram displays the distribution of the residuals by frequency, KDE gives a smoothed 

estimate of the density, and the standard normal curve plots on top to compare the 

distribution of the residuals to a normal distribution. 

xvi. Ljung-Box Test 

The Ljung-Box test is a statistical test to see if a time series has significant autocorrelation (i.e., 

whether future values depend on past values). The test can be used to test if the residuals 

(errors) of a model are white noise or if there is still structure that the model has failed to 

explain. The test provides a p-value, and based on this, conclusions can be made: 

If p-value > 0.05 , then the residuals are independent (no significant autocorrelation), the model 

adequately captures the time series structure and no significant patterns are left in the residuals. 

 

 

5.5 SEASONAL AUTOREGRESSIVE MOVING AVERAGE (SARIMA) 

 
Time series data are non-stationary, i.e., their statistical characteristics (mean, variance, 

autocorrelation) vary over time. AR, MA, and ARMA models presume stationarity, and hence 

cannot be used for non-stationary series directly. To deal with non-stationary data, one usual 

method used is differencing, which converts the series to a stationary form by calculating the 

difference between two consecutive observations. This is achieved by subtracting the last value 
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from the present value: 

 

𝑍𝑡 − 𝑍𝑡−1 = (1−B) 𝑍𝑡 

 
where B is the backward shift operator such that B𝑍𝑡 = 𝑍𝑡−1 . If necessary, this differencing 

can be applied multiple times until stationarity is achieved. After differencing d times, an 

ARMA (p, q) model can be fitted to the transformed data. The resulting model is called ARIMA 

(p, d, q), where: 

p is the order of the autoregressive (AR) process, 

 

d is the number of differences applied to achieve stationarity, 

q is the order of the moving average (MA) process. 

Mathematically, an ARIMA (p, d, q) model is expressed as: 

 

∅(𝐵)(1 − 𝐵)𝑑𝑍𝑡 = 𝜃(𝐵)𝜀𝑡 

 
where: 

 

∅ (B) = 1 - ∅1B - ∅2𝐵2 -...- ∅𝑝𝐵𝑝 represents the AR component. 

θ(B) = 1−𝜃1B - 𝜃2𝐵2 -...- 𝜃𝑞𝐵𝑞 represents the MA component. 

(1 − 𝐵)𝑑applies 𝑑𝑡ℎ order differencing. 

𝜀𝑡 is a white noise process with mean 0 and constant variance 𝜎2 

 
Incorporating seasonality : 

Most real-time series are seasonal, i.e., they have cycles that recur at fixed intervals s (e.g., 

monthly data with s =12 for an annual cycle). SARIMA (Seasonal ARIMA) is an extension of 

ARIMA that adds seasonal terms to capture cycles recurring every s time periods. 

 

A SARIMA (p, d, q) × (P, D, Q)_s model accounts for both non-seasonal and seasonal 

components, where: 
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P is the order of the seasonal autoregressive, this term represents the relationship, especially at 

seasonal lags, between the series' past values and present 

D is seasonal differencing order, this part covers the differencing that is required to remove 

seasonality from the series, similar to that of non-seasonal differencing. 

Q is the seasonal moving average order, this component replicates the relationship that there is 

between the current value and the seasonal lags of the residual errors 

s is the seasonal period 

 

The mathematical expression of SARIMA model can be stated as : 

∅(𝐵)𝛷(𝐵𝑠) (1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑍𝑡 = 𝜃(𝐵)𝛩(𝐵𝑠) 𝜀𝑡 

 
where: 

 

∅(𝐵) = 1 - ∅1B - ∅2𝐵2 -...- ∅𝑝𝐵𝑝 

 
𝜃(𝐵) = 1−𝜃1B - 𝜃2𝐵2 -...- 𝜃𝑞𝐵𝑞 

 
𝛷(𝐵𝑠) = 1 - 𝛷1𝐵𝑠 - 𝛷2𝐵2𝑠 -...- 𝛷𝑝𝐵𝑃𝑠 

 
𝛩(𝐵𝑠) = 1−𝛩1𝐵𝑠 - 𝛩2𝐵2𝑠 -...- 𝛩𝑄𝐵𝑄𝑠 

 
(1 − 𝐵)𝑑 applies non-seasonal differencing d times. 

 

(1 − 𝐵𝑠)𝐷 applies seasonal differencing D times. 

 

𝜀𝑡 is a white noise process. 

 

This multiplicative model retains both short-term (non-seasonal) and long-term (seasonal) 

relationships in time series data, and hence SARIMA is a very effective method for forecasting 

data with trend and seasonal variations. 
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figure 5.1 Steps involved in forecasting using SARIMA model 

 

5.6 HOLT WINTERS EXPONENTIAL SMOOTHING TECHNIQUE 

 
Holt’s method can be extended to deal with time series which contain both trend and seasonal 

variations.Holt-Winters can be in both additive  and  multiplicative forms depending on 

the exact nature of the time series data.. Let 𝐿𝑡, 𝑇𝑡, 𝐼𝑡denote the local level, trend and seasonal 

index, respectively at time t. 

The interpretation of it depends on whether seasonality is thought to be additive or 

multiplicative. In the additive case I, 𝑦𝑡 − 𝐼𝑡 is the deseasonalized value, while in the 

multiplicative class it is 𝑦𝑡/𝐼𝑡. The values of the 3 quantities 𝐿𝑡, 𝑇𝑡, 𝐼𝑡 all need to be estimated 

and so we need 3 updating equations with three smoothing parameters, say ∝, γ and δ. As before 

the smoothing parameters are usually chosen in the range (0, 1). The form of the updating 

equations is again intuitively plausible. 

Suppose the seasonal variation is multiplicative. Then the (recurrence form) equations for 

updating 𝐿𝑡, 𝑇𝑡, 𝐼𝑡 when a new observation 𝑦𝑡 becomes available are 

𝐿𝑡 = α (𝑦𝑡 / 𝐼𝑡−𝑠 ) + ( 1- α ) ( 𝐿𝑡−1 + 𝑇𝑡−1 ) 

𝑇𝑡 = γ ( 𝐿𝑡 – 𝐿𝑡−1 ) + (1- γ ) 𝑇𝑡−1 

𝐼𝑡 = δ ( 𝑦𝑡 / 𝐿𝑡 ) + ( 1- δ ) 𝐼𝑡−𝑠 

and the forecasts from time (t) are then, 

𝑦^𝑡+ℎ= ( 𝐿𝑡 + h𝑇𝑡 ) 𝐼𝑡−𝑠+ℎ for h = 1,2,…….s 
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where s denotes the seasonal period ( For example: s = 4 for quarterly data and 12 for monthly 

data ). If the seasonal variation is additive, the equations for updating 𝐿𝑡, 𝑇𝑡, 𝐼𝑡 when a new 

observation 𝑦𝑡 becomes available are 

𝐿𝑡 = α (𝑦𝑡 - 𝐼𝑡−𝑠 ) + ( 1- α ) ( 𝐿𝑡−1 + 𝑇𝑡−1 ) 

𝑇𝑡 = γ ( 𝐿𝑡 – 𝐿𝑡−1 ) + (1- γ ) 𝑇𝑡−1 

𝐼𝑡 = δ ( 𝑦𝑡 - 𝐿𝑡 ) + ( 1- δ ) 𝐼𝑡−𝑠 

 
and the forecasts from time (t) are then 

 

𝑦^𝑡+ℎ = ( 𝐿𝑡 + h𝑇𝑡 ) 𝐼𝑡−𝑠+ℎ for h = 1,2,…….s 

For starting values, it seems sensible to set the level component 𝐿0 , equal to the average 

observation in the first year that is, 

𝑠 

𝐿0 = ∑ 𝑦𝑡 

𝑡=1 

where s is the number of seasons. The starting values for the slope component can be taken 

from the average difference per period between the first and second-year averages. That is, 

(∑2𝑠 𝑦𝑡) (∑𝑠 
𝑦 ) 

  𝑡=𝑠+1   𝑡=1 𝑡  

𝑇0 = 𝑠 
− 𝑠 

𝑠 
 

 

Finally, the starting value of S I can be calculated after allowing for a trend adjustment, 

as follows: 

𝐼0= ( 𝑦𝑘 – ( k-1) 𝑇0 ) / 2 ( multiplicative) 

𝐼0= ( 𝑦𝑘 - ( 𝐿0 + ( k-1) 𝑇0)/2) (additive) 

 

Where k= 1, 2 …….s. This will lead to (s) separate values for 𝐼0, which is what is required to 

gain the initial seasonal pattern. 
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5.7 PROPHET MODEL 

 
The Prophet model is a time series model, which was revealed by its creators, Taylor and Letham 

(2017) of the Facebook data science team. It is an open-source and Python and R- supported 

forecasting tool applied in forecasting. Although Facebook Prophet provides yearly, monthly, 

and daily forecasts in non-linear data, it also incorporates holidays as specified. It can pre- 

process  data.  The  following  equation is used  to  define the  process of integrating 

the components: 

y(t) = g(t) + s(t) + h(t) + 𝜀𝑡 

LOAD THE DATA 

SPLIT DATAINTOTRAINING 

AND TESTING SET 

INITIALIZE AND TRAIN THE 

HOLT WINTER’S MODEL 

DIAGNOSTIC CHECKING 

FORECAST ON TEST DATA 

EVALUATE MODEL 

PERFORMANCE 

VISUALISE ACTUAL 

VERSUS PREDICTED 

FORECAST FUTURE 

VALUES 
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Additivity y(t) in time series data trends are denoted by g(t), seasonality by s(t), holiday 

impact by h(t), and model error 𝜀𝑡 in the Regressive Model. The model is built with the 

python-based fbprophet API and takes only two inputs: the target variable to be forecasted, 

which is denoted as "y," and the timestamp, which is marked as "ds". 

 

 

figure 5.2 Steps involved in forecasting using prophet model 

 

The main process in prophet is: 

1. Data Preprocessing: This was the part where data cleaning and parameter choice for analysis 

was taken into account. 

2. Time Series Creation and Decomposition: This is where the use case associated with analysis 

was taken into account. These processes had required sub-factors like daily, weekly, monthly, 

and yearly choices. 

3. Model Building: This step involves building a model for data prediction from chosen factors. 

4. Prediction: The last step was predicting the performance of the model using testing data. 

A time series decomposition is a significant task that helps in comprehending its very essence. It 

facilitates easier analysis and prediction of intricate time series with latent components like the 

trend, seasonal components, and periodic components. Two years of forecasting and just two 

variables are needed for the Python Prophet. The Facebook (FB) Prophet is the latest tool that 

has proved to have superior prediction accuracy. The Python fbprophet library is utilized to 

implement the Prophet approach on the dataset. Since Prophet is univariate, data was pre-cleaned 

to have date only and dependent factors. 

Dataset 
Data Preprocessing,Preparation 

and Formatting 
Daily 

Decomposing Timeseries dataset Weekly 

Monthly 

Yearly 
Building Model 

Forecasting 
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CHAPTER 6 

RESULTS AND DISCUSSION 

This chapter discusses a comparative study of time series modeling and forecasting of monthly 

rainfall of Kerala using SARIMA, Holt-Winters Exponential Smoothing forecasting and 

Prophet model. The data comprises 174 observations from July 2010 to December 2024. 

6.1 EXPOLATORY DATA ANALYSIS 

 
6.1.1 Descriptive Statistics 

 
Table 6.1 Descriptive Statistics 

 

count 174.000000 

mean 236.926437 

std 230.067491 

Min 0.300000 

25% 47.350000 

50% 168.050000 

75% 377.425000 

max 1041.100000 

 

6.1.2 Time Series plot 

 

 
figure 6.1 Time series plot 
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6.1.3 Time Series Decomposition 

Seasonal decomposition is performed for the evaluation of trend, seasonality and random 

components. From figure 6.2 it is clearly visible that it shows seasonality. 

 

 
figure 6.2 Time Series Decomposition 

 

Original Series (Top Panel): This plot represents the actual observed time series data. It shows 

significant seasonal fluctuations, with peaks and troughs occurring at regular intervals, which 

is typical of rainfall data. 

Trend Component (Second Panel): This represents the long-term trend in the data. It smooths 

out short-term variations to show whether the overall rainfall levels are increasing, decreasing, 

or remaining stable. From the plot, the trend shows some fluctuations but generally appears to 

rise around 2018–2022 before slightly stabilizing. 

Seasonal Component (Third Panel): This captures repeating seasonal patterns in the data. The 

regular peaks and troughs suggest strong seasonality, which is expected in rainfall data due to 

monsoon effects. 

Residual Component (Bottom Panel): This represents the remaining variation in the data after 

removing the trend and seasonal components. It consists of irregular, random fluctuations that 

cannot be explained by the trend or seasonality alone. 
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6.2 MODELING AND FORECASTING OF RAINFALL USING SARIMA 

MODEL 

figure 6.1 depicts the time series plot of monthly rainfall data. It is visible that there is 

seasonality in the data. The visual inspection alone is not enough to specify that the changes in 

the mean are statistically significant. So, to decide ACF and PACF is plotted. figure 6.3 and 

figure 6.4 shows ACF and PACF. 

 

 

figure 6.3 ACF plot of time series data 

 

 

figure 6.4 PACF plot of time series data 

 

The figure 6.4 indicates that the ACF fails to die out rapidly towards zero. Rather than dying 

down along the first several lags, the graph displays a slow decrease in the size of ACF values, 

which is a typical pattern for a non-stationary series. 

Now the seasonal index for various seasons can be obtained by ratio to moving average method. 

From figure 6.5 it is obtained the seasonal indices for the data which shows the maximum 

rainfall is received during July and minimum rainfall is received during the month of February 

followed by January. 
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Table 6.2 Seasonal Indices 

 

Month Seasonal Indices 

January 0.074224 

February 0.056217 

March 0.173290 

April 0.514927 

May 0.851742 

June 2.184687 

July 2.475431 

August 2.072198 

September 1.335291 

October 1.266072 

November 0.764395 

December 0.231526 

 

figure 6.5 Plot of Seasonal Indices 

 

The seasonal behaviour of monthly data indicates the presence of a seasonal component. 

 

𝐻0 = 𝐷𝑎𝑡𝑎 𝑖𝑠 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 
 

𝐻1 = 𝐷𝑎𝑡𝑎 𝑖𝑠 𝑛𝑜𝑛 − 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 

On performing the ADF test we get, 

 

Table 6.2 ADF test result of non stationary data 

 

Dickey -Fuller -2.2482811418475026 

p-value 0.18919088296251468 
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Since p-value is less than 0.05, we reject the null hypothesis and the data is non stationary. So, 

perform seasonal differencing to make it stationary by taking the difference between a value 

and a value with lag S=12 for the transformed data. That is, the seasonal difference is 𝑥𝑡 = 

𝑥𝑡 − 𝑥𝑡−12 . The time series plot for the seasonally differenced data is shown in the figure 6.6. 
 

figure 6.6 Plot of seasonally differenced monthly rainfall in Kerala 

 

From the seasonal differenced figure 6.6 it is evident that the seasonal behaviour is removed 

from the series. Now again plot the seasonal differenced ACF and PACF. 

 

ACF plot of Seasonally differenced data 
 

 
figure 6.7 ACF plot of seasonally differenced data 
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PACF plot of Seasonally differenced data 
 

 

 

figure 6.8 PACF plot of seasonally differenced data 

 

Augmented Dickey-Fuller (ADF) Test 

 

To clarify whether the differenced series is stationary or not. ADF test is performed. The result 

of the test is in table 6.3. 

 

Table 6 .3 ADF test result of stationary data 

 

Dickey-Fuller -4.272193193805211 

p-value 0.0004961284892897813 

Since p-value is less than 0.05, it is clear that the differenced data is stationary. No more 

seasonal differencing is needed. Now D=1 and d=0 , to find the seasonal AR order (P) and the 

seasonal MA order (Q) have to plot the ACF and PACF OF stationary data at seasonal lags. 
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ACF of seasonally differenced data at seasonal lags 
 

figure 6.9 ACF plot of seasonally differenced data at seasonal lags 

 

 

 

PACF of seasonally differenced data at seasonal lags 

 

 
figure 6.10 PACF plot of seasonally differenced data at seasonal lags 

 

 

figure 6.9 and figure 6.10 shows the ACF and PACF of seasonally differenced data at seasonal 

lags. From the above ACF and PACF of seasonally differenced data non seasonal AR order and 

non- seasonal MA order is maximum p = 2 and maximum q = 1, and also know that d = 0. From 

the ACF and PACF of seasonally differenced data at seasonal lags maximum P = 8 and 

maximum Q = 4 and D = 1. 

Thus, the possible time series models and their corresponding AIC statistics for the monthly 
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rainfall data is : 

Table 6.4 ARIMA models and their corresponding AIC values 
 

 

NO. ARIMA(p,d,q) x (P,D,Q) AIC 

1 ARIMA(0,0,0)(0,1,0)[12] 2134.775 

2 ARIMA(1,0,1)(1,1,0)[12] 2061.382 

3 ARIMA(0,0,0)(0,1,0)[12] 2132.785 

4 ARIMA(1,0,0)(0,1,0)[12] 2127.286 

5 ARIMA(1,0,0)(2,1,0)[12] 2020.292 

6 ARIMA(0,0,2)(1,1,1)[12] 1869.696 

7 ARIMA(1,0,0)(3,1,0)[12] 2000.908 

8 ARIMA(1,0,0)(4,1,0)[12] 1977.604 

9 ARIMA(1,0,0)(5,1,0)[12] 1977.012 

10 ARIMA(1,0,0)(6,1,0)[12] 1973.856 

11 ARIMA(1,0,0)(7,1,0)[12] 1975.440 

12 ARIMA(0,0,0)(6,1,0)[12] 1986.306 

13 ARIMA(2,0,0)(6,1,0)[12] 1973.343 

14 ARIMA(2,0,0)(5,1,0)[12] 1977.366 

15 ARIMA(2,0,0)(7,1,0)[12] 1975.095 

16 ARIMA(2,0,1)( 6,1,0)[12] 1977.719 

17 ARIMA(1,0,1)( 6,1,0)[12] 1974.084 

 

According to minimum Akaike Information Criteria, ARIMA(0,0,2) x (1,1,1)[12] model is 

found to be more appropriate. The parameter estimates for the model are given in the table 6.5. 

Table 6.5 ARIMA(0,0,2)x(1,1,1)[12] model parameters 

Parameter Coefficient Standard 

Error 

z P>|z| 

ma.L1 0.2664 0.069 3.866 0.000 

ma.L2 0.0496 0.071 0.695 0.487 

ar.S.L12 -0.0598 0.077 -0.773 0.440 

ma.S.L12 -0.7638 0.079 -9.659 0.000 

sigma2 1.762e+04 1429.577 12.325 0.000 
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The fitted SARIMA model is : 

 

(1 + 0.0598 𝐵12 )(1 − 𝐵12 ) 𝑍𝑡 = (1 − 0.2664 B − 0.0496 𝐵12 )(1 + 0.7638 𝐵12 ) 𝜀𝑡 

Diagnostic Checking 

 

Diagnostic checking is a crucial step to ensure the reliability, effectiveness and validity of 

statistical models. It helps to understand how precise the model is and to improve prediction 

accuracy. 

 

 

figure 6.11 Q-Q plot of residuals 

 

The figure 6.11 depicts the quantile-quantile plot comparing the distribution of residuals with 

the normal distribution. It is clear that the most of the residual values lie on the straight line , 

which indicates the residuals are approximately normally distributed. 

 

 

figure 6.12 Correlogram of residuals 

 

The figure 6.12 shows the correlogram, examination of correlogram can be evidently seen that 

all the lags die to zero means that there is no significant autocorrelation present in the data. 
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Since all autocorrelations fall within the confidence intervals (shaded area), the residuals are 

not significantly autocorrelated, indicating a good model fit. 

 

 

figure 6.13 Histogram of residuals 

 

The figure 6.13 shows the histogram of standardized residuals overlaid with the kernel density 

estimate (KDE) and the standard normal distribution N(0,1). Since the histogram matches the 

normal distribution curve (green line), the residuals are approximately normal. 

Table 6.6 Ljung box test result 

 

Test statistic p_value 

15.748041 0.107076 

𝐻0 : There is significant autocorrelation in the residuals 

 

𝐻1 ∶ There is no significant autocorrelation in the residuals 

 

Table 6.6 indicates the Ljung box test result. Since the p-value (0.107) is greater than 0.05, we 

fail to reject the null hypothesis. This means there is no significant autocorrelation in the 

residuals. 

Thus the diagnostic checking reveals that the fitted ARIMA (0,0,2) x (1,1,1)[12] model is 

statistically adequate. Also, the model statisfies stationary and invertibility requirements. So 

the model can be used to forecast the monthly Rainfall data. 

In-sample forecast 
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Now, the fitted time series model is used to do In-sample forecasting. In-sample forecsting is 

done for the last year in the dataset that is from January 2024 – December 2024. 

Table 6.7 In-sample forecast using the SARIMA model 

 

Months Actual value(mm) Predicted value(mm) 

Jan 13.0 32.9674 

Feb 3.9 5.8867 

Mar 46.8 40.4900 

Apr 100.2 123.5940 

May 152.7 204.2318 

Jun 223.0 419.1762 

Jul 588.7 548.3822 

Aug 67.3 562.6908 

Sep 333.1 179.8283 

Oct 297.0 323.8057 

Nov 268.6 186.3770 

Dec 156.2 141.7653 

Fitted Versus Actual values 

 

The actual and fitted values are plotted in the figure 6.14. The red line shows the predicted 

(fitted) values and blue line shows the actual values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

 

figure 6.14 Fitted versus actual values using the SARIMA model. 
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Forecasting of rainfall using the SARIMA model 

 

The model can be used for forecasting. The rainfall from January 2025 to December 2026 is 

forecasted using the SARIMA model fitted. The forecasted values are computed and plotted 

(Table 6.8 and figure 6.15). The green dotted line indicates the forecasted rainfall. 

Table 6.8 SARIMA model forecast 

 

Months Forecasted 

Values(mm) 

LCL 

(mm) 

UCL 

(mm) 

Months Forecasted 

Values(mm) 

LCL 

(mm) 

UCL 

(mm) 

Jan 

2025 

44.9081 0 290.73 Jan 

2026 

24.1579 0 290.41 

Feb 

2025 

11.8728 0 268.05 Feb 

2026 

8.4641 0 274.49 

Mar 

2025 

42.2341 0 302.76 Mar 

2026 

42.5078 0 309.19 

Apr 

2025 

115.4348 0 374.71 Apr 

2026 

114.5235 0 381.17 

May 

2025 

195.1394 0 452.46 May 

2026 

192.6009 0 458.96 

Jun 

2025 

386.3188 101.35 636.84 Jun 

2026 

376.5499 91.4913 643.53 

Jul 

2025 

605.3150 329.08 864.61 Jul 

2026 

604.3212 318.9825 871.07 

Aug 

2025 

475.5263 169.79 705.31 Aug 

2026 

451.1083 160.2971 712.39 

Sep 

2025 

309.4874 35.24 570.76 Sep 

2026 

310.8998 25.0732 577.16 

Oct 

2025 

300.6518 25.31 560.83 Oct 

2026 

300.4334 25.2879 567.28 

Nov 

2025 

200.4659 0 465.49 Nov 

2026 

204.5414 0 471.82 

Dec 

2025 

77.3011 0 342.90 Dec 

2026 

82.0205 0 349.21 
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figure 6.15 A plot of forecasted values using SARIMA model 

 

 

 

6.3 MODELING AND FORECASTING OF RAINFALL USING HOLT- 

WINTERS METHOD 

Here Holt Winters Forecasting procedure is used to forecast rainfall. Now table 6.9 shows the 

parameter estimates of the model. 

 

 

Table 6.9 Holt Winter’s model parameters 

 

Parameter Parameter Estimates 

Alpha 

(Level) 

0.0401474 

Gamma 

(Trend) 

0.0393733 

Delta 

(Season) 

0.0677946 
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Fitted Holt Winters Additive model is : 

 

𝐿𝑡 = 0.0401474( 𝑦𝑡 - 𝐼𝑡−𝑠 ) + ( 1- 0.0401474 ) ( 𝐿𝑡−1 + 𝑇𝑡−1 ) 

 

𝑇𝑡 = 0.0393733 ( 𝐿𝑡 – 𝐿𝑡−1 ) + (1- 0.0393733 ) 𝑇𝑡−1 

 
𝐼𝑡 = 0.0677946 ( 𝑦𝑡 - 𝐿𝑡 ) + ( 1- 0.0677946 ) 𝐼𝑡−𝑠 

 
Diagnostic Checking 

Diagnostic checking is a crucial step to ensure the reliability, effectiveness, and validity of 

statistical models. It helps to understand how precise the model is and to improve the prediction 

accuracy. 

 

 

figure 6.16 Q-Q plot of residuals 

 

The figure 6.16 depicts the Q-Q plot , it is clear that the most of the residual values lie on the 

straight line, which indicates that residuals are approximately normally distributed. 

 

 

 

 

figure 6.17 Correlogram of residuals 
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The figure 6.17 shows the correlogram , from the examination of correlogram it can be 

evidently seen that all the lags die to zero means that there is no significant autocorrelation 

present in the data. 

 

 

figure 6.18 Histogram of residuals 

 

The figure 6.18 shows the histogram of standardized residuals. Since the histogram matches 

the normal distribution curve, the residuals are approximately normal. 

Table 6.10 Ljung box test result 

 

Test statistic p_value 

10.759955 0.376523 

 

 

𝐻0 : There is significant autocorrelation in the residuals 

 

𝐻1 ∶ There is no significant autocorrelation in the residuals 

 

Table 6.10 indicates the Ljung box test result. Since the p-value (0.107) is greater than 0.05, 

we fail to reject the null hypothesis. This means there is no significant autocorrelation in the 

residuals. 

Thus from the diagnostic checking it is evident that the fitted Holt-Winters model is 

statistically adequate. So, the model can be used to forecast the monthly rainfall of Kerala. 
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In-sample Forecasting 

Now the fitted time series model is used to do In-sample forecasting. In-sample forecasting is 

done for the last year in the dataset that is from January 2024 to December 2024. 

 

 

Table 6.11 In-sample forecasting using Holt winter’s model 

 

Months Actual value(mm) Predicted value(mm) 

Jan 13.0 90.7842 

Feb 3.9 86.5774 

Mar 46.8 112.3429 

Apr 100.2 193.0212 

May 152.7 303.0725 

Jun 223.0 652.8139 

Jul 588.7 642.3624 

Aug 67.3 590.6612 

Sep 333.1 406.5909 

Oct 297.0 371.9924 

Nov 268.6 229.7777 

Dec 156.2 123.1724 

 

 

 

figure 6.19 Fitted versus actual values using the Holt winter’s exponential smoothing 

technique 
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From figure 6.19 it given that green lines are the training data, blue line is the actual testing 

data and orange line indicated testing predicted data. 

Forecasting of rainfall using Holt-Winters model 

Rainfall from January 2025 to December 2026 is forecasted using the model fitted. 

 

Table 6.12 Holt winter’s model forecast 

 

Months Forecasted 

Values(mm) 

LCL 

(mm) 

UCL 

(mm) 

Months Forecasted 

Values(mm) 

LCL 

(mm) 

UCL 

(mm) 

Jan 

2025 

104.8621 0 241.71 Jan 

2026 

114.7331 0 279.02 

Feb 

2025 

100.6553 0 228.45 Feb 

2026 

140.4981 0 267.54 

Mar 

2025 

126.4208 0 202.89 Mar 

2026 

221.1770 0 388.93 

Apr 

2025 

207.0991 0 344.17 Apr 

2026 

331.2282 0 393.04 

May 

2025 

317.1503 0 473.64 May 

2026 

680.9696 0 788.32 

Jun 

2025 

666.8918 101.35 687.84 Jun 

2026 

670.5182 91.4913 844.34 

Jul 

2025 

604.7391 329.08 864.61 Jul 

2026 

618.8170 318.9825 817.84 

Aug 

2025 

420.6687 169.79 815.19 Aug 

2026 

434.7466 160.2971 512.39 

Sep 

2025 

386.0702 35.24 560.93 Sep 

2026 

400.1481 25.0732 542.22 

Oct 

2025 

243.8556 25.31 593.38 Oct 

2026 

257.9335 25.2879 367.82 

Nov 

2025 

137.2503 0 465.49 Nov 

2026 

151.3281 0 271.18 

Dec 

2025 

118.9400 0 423.80 Dec 

2026 

133.0179 0 249.01 
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Table 6.12 is the forecasted values and its LCL and UCL of rainfall for January 2025 to 

December 2026 

 

 

figure 6.20 A plot of forecasted values using Holt winter’s exponential smoothing technique 

 

The figure 6.20 is the plot of forecasted values using Holt Winter’s model. 

 

6.4 MODELING AND FORECASTING OF RAINFALL USING 

PROPHET MODEL 

Here Prophet model is used to forecast the rainfall from January 2025 to December 2026. 

 

Diagnostic checking 
 

figure 6.21 Q-Q plot of residuals 
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It is clear from the figure 6.21 most ofthe residual values lie onthe straight line, which indicates 

the residuals are approximately normally distributed. 

 

 

figure 6.22 Correlogram of residuals 

 

From the examination of correlogram in figure 6.22 can be evidently seen that all the lags die 

to zero means that there is no significant autocorrelation present in the data. 

 

 

 

 

figure 6.23 Histogram of residuals 
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In the figure 6.23, the histogram matches the normal distribution curve (green line), the 

residuals are approximately normal. 

Table 6.13 Ljung box test result 

 

Test statistic p_value 

10.448435 0.402069 

 

 

𝐻0 : There is significant autocorrelation in the residuals 

 

𝐻1 ∶ There is no significant autocorrelation in the residuals 

 

Table 6.13 indicates the Ljung box test result. Since the p-value (0.107) is greater than 0.05, 

we fail to reject the null hypothesis. This means there is no significant autocorrelation in the 

residuals. 

 

 

Thus fromthe diagnostic checking it is evident that the fitted Prophet model is statistically 

adequate. So, the model can be used to forecast the monthly rainfall of Kerala. 

 

 

In-sample Forecasting 

 

Now the fitted time series model is used to do In-sample forecasting. In-sample forecasting is 

done for the last year in the dataset that is from January 2024 to December 2024. 
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Table 6.14 In-sample forecast using Prophet model 

 

Months Actual value(mm) Predicted value(mm) 

Jan 13.0 10.5111 

Feb 3.9 10.7698 

Mar 46.8 35.8474 

Apr 100.2 108.9124 

May 152.7 204.9871 

Jun 223.0 514.3679 

Jul 588.7 568.2219 

Aug 67.3 458.1893 

Sep 333.1 317.6038 

Oct 297.0 285.2710 

Nov 268.6 173.2909 

Dec 156.2 48.2215 

 

 

Forecasting of rainfall using Prophet model 

 

Rainfall from January 2025 to December 2026 is forecasted using the model fitted. 

 

 

 

Table 6.15 Prophet model forecast 

 

Months Forecasted 

Values(mm) 

LCL 

(mm) 

UCL 

(mm) 

Months Forecasted 

Values(mm) 

LCL 

(mm) 

UCL 

(mm) 

Jan 

2025 

12.9929 0 182.186 Jan 

2026 

15.2341 0 179.800 

Feb 

2025 

29.0089 0 188.206 Feb 

2026 

26.7806 0 197.684 

Mar 

2025 

125.7613 0 290.795 Mar 

2026 

127.9675 0 277.950 

Apr 

2025 

164.7044 0 322.764 Apr 

2026 

155.7066 0 316.843 

May 

2025 

481.5497 11.8124 637.446 May 

2026 

474.5642 311.296 644.044 
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Jun 

2025 

580.3397 322.800 738.761 Jun 

2026 

582.5591 423.187 743.535 

Jul 

2025 

521.7161 427.299 671.773 Jul 

2026 

533.1738 373.395 705.078 

Aug 

2025 

277.7921 259.505 437.007 Aug 

2026 

268.6594 113.836 437.665 

Sep 

2025 

297.4294 116.657 459.532 Sep 

2026 

299.0927 135.202 450.107 

Oct 

2025 

167.6165 137.067 334.067 Oct 

2026 

165.6124 4.857 324.094 

Nov 

2025 

43.7777 9.649 196.812 Nov 

2026 

42.2809 0 199.794 

Dec 

2025 

8.7047 0 172.672 Dec 

2026 

22.45 0 61.987 

 

 

 

 

Table 6.15 is the forecasted values and its LCL and UCL of rainfall for January 2025 to 

December 2026 

 

 

figure 6.24 A plot of forecasted values using Prophet model 

 

The figure 6.24 is the plot of forecasted values using Prophet model. 
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6.5 COMPARISOMN BETWEEN SARIMA, HOLT-WINTERS AND 

PROPHET MODEL 

To determine the best model, the performance metrices should be compared and considered. 

Here the Mean Absolute Error (MAE) and Root Mean Square Error were provided for the three 

models. 

Table 6.16 

 

 SARIMA Model Holt Winter’s Model Prophet Model 

MAE 103.16 113.23207798875812 85.54657338176848 

RMSE 161.4308216265108 164.12057903418 147.8211734743146 

 

 

From table 6.16 it is evident that Prophet model has the lower MAE and RMSE value compared 

to SARIMA and Holt Winter’s model. That is Prophet model appears to be perform better than 

the other model. 
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CONCLUSION 

Three time series models were used for the forecasting of monthly rainfall data of Kerala for 

the year January 2025 to December 2026.The historical rainfall data of Kerala from January 

2010 to December 2024 were analysed and forecasted using SARIMA, Holt winter’s 

exponential smoothing technique and Prophet model. Prophet model was concluded as the best 

model with a low RMSE of 147.821 and MAE of 85.546. SARIMA model had a RMSE of 

161.430 and MAE of 103.16 and Holt winter’s exponential smoothing had a RMSE of 164.120 

and MAE of 113.232. All the three models offer viable forecasting solutions, the Prophet model 

is recommended for its superior accuracy and flexibility, particularly for datasets with 

seasonality or missing values. However, if computational efficiency is critical, Holt-Winter’s 

Exponential Smoothing could be considered for simpler datasets. For data with clear statistical 

properties and stationarity, SARIMA remains a robust option but may require significant effort 

in tuning parameters. 

Even though prophet is the best fitted model, we chose SARIMA as our best model, due to the 

prophet’s black box approach. SARIMA have strong theoretical foundation and it also provides 

explicit control over seasonal and non-seasonal differencing, AR, and MA components, 

allowing for greater transparency in model behavior and the parameters can be explicitly 

analysed. Unlike Prophet is a black-box approach due to its automated detection of seasonality, 

trends, and holiday effects, While Prophet simplifies forecasting by automating many aspects, 

it may not always align well with domain-specific requirements, making SARIMA a preferred 

choice when interpretability and control are essential. 

From the analysis of the 174 months of past rainfall data and the new forecasted data it is 

evident that there is a change in the rainy months. June was the most raining month. However, 

in the current dataset, the trend has shifted, July emerges as the most rainy month followed by 

August. This shift is visible from 2018 and it also indicate a changing climate pattern or other 

external factors influencing the rainfall distribution over the years. 

In conclusion, this study uncovers past rainfall patterns in Kerala and hints at exciting 

possibilities for more research. By using advanced models, gained insights into historical data, 

underlining the importance of ongoing climate and environmental studies. This research not 

only tells about the past but also opens doors for future exploration in the realm of climate 

science. 
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