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A STUDY ON RHOTRIX THEORY

Chapter 1

INTRODUCTION TO RHOTRIX THEORY

1.1 HISTORY OF RHOTRIX THEORY

The theory of rhotrix is a relatively new area of mathematical discipline dealing with algebra
and analysis of arrays of numbers in mathematical rhomboid form. The theory began from the
work of (Ajibade, 2003), when he initiated the concept, algebra and analysis of rhotrices as an
extension of ideas on matrix-tersions and matrix-noitrets proposed by (Atanassov and Shannon,
1998). Ajibade gave the initial definition of a rhotrix of size 3 as a mathematical array that is in
some way, between two-dimensional vectors and 2x2 dimensional matrices. Since the
introduction of the theory in 2003, many authors have shown interest in the usage of the rhotrix
set, as an underlying set, for construction of algebraic structures. [7]

Following Ajibade’s work, (Sani, 2004) proposed an alternative method for multiplication of
rhotrices of size three based on their rows and columns as comparable to matrix multiplication,
which was considered to be an attempt to answer the question of “whether a transformation can
be made to convert a matrix into a rhotrix and vice versa“ posed in the concluding section of the
initial article on rhotrix. This method of multiplication is now referred to as “row-column based
method for rhotrix multiplication”. Unlike Ajibade’s method of multiplication that is both
commutative and associative, Sani’s method of rhotrix multiplication is non-commutative but

associative. [15]

1.2 CONCEPT OF RHOTRIX IN MATHEMATICAL ENRICHMENT

A rhotrix is a rhomboid array of numbers where ¢ = h(R) is called the heart of any rhotrix R and

R is the set of real numbers. R is the set of all 3 dimensional rhotrices.

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam



A STUDY ON RHOTRIX THEORY

Heart of a Rhotrix : The element at perpendicular intersection of the two diagonals of any
rhotrix is known as the heart of the rhotrix.

Dimension : A rhotrix is always of odd dimension.

Cardinality : A rhotrix of dimension n has (n*+1)/2 entries.

Coupled Matrix : The transpose of a matrix is an operator which flips a matrix over its
diagonal, that is equivalent to rotating columns of the matrix by 90° in anticlockwise direction.
The coupled matrices of Rhotrix can be obtained by rotating its columns by 45 degrees in
anticlockwise direction instead of 90 degrees.

Let's consider a rhotrix of order 5.

a11 all a12 a13
A1 €11 Qg - C11 C12
c a c =
Rs X asz; 21 22 12 Q43 Rs2 =| ay, az, az3
a C a
32 C22 23 Cag C2
ass
aszq as; ass

Here T/2 indicates half rotation in comparison to transpose, but direction is the same (anti-clock
wise). We observe two coupled matrices— higher order matrix A known as major matrix and

lower order matrix C is known as minor matrix.

a1 Q12 A3 and C _[C11 ClZ]
Az =|021 Q2 A3 2X2 7 a1 €22

a3z1 Qzz A3z
In general, for a Rhotrix of order n (R{n}) one can have
an = <aij » Cik >m = [Aij Cyl=1[4C]
(say),where i,j = 1,2 ,3 ...,t ; Lk=1,2,3..t. So, A and C are coupled square matrices of order t
and t-1,where t=(n+1)/2.[16]
Major And Minor Entries :
Let R, = <aij., c,d> be an n-dimensional rhotrix. Then, (a;) is the (1,j) entries and are called the
major entries of R | and ¢, is the (k,])-entries and are called the minor entries of R,..
Major And Minor Matrices :
A rhotrix R, = <ay" Ck1> of n-dimension is a coupled of two matrices (a;) and (cy) consisting of its
major and minor matrices respectively. Therefore, (a;) and (cy) are the major and minor matrices
of R,.
Major And Minor Rows :
Let R = <a,.j, ck]> be an n-dimensional rhotrix. Then, rows and columns of (c;) and ¢) will be

called the major (minor) rows and columns of R, respectively. [4]

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam



A STUDY ON RHOTRIX THEORY

Transpose of a Rhotrix : The transpose of a Rhotrix can be obtained by exchanging rows with

corresponding columns of a Rhotrix. Let, R be a rhotrix of order 3.

a a
R3=<b h(R) }Then, RTzé h(R) b>
e e

The transpose of two Rhotrices R and Q of same order hold the property (RQ)"= Q" * R".

Example:
1 1
4 3 6 6 3 4
Rs=(7 7 5 0 3\ Thenitstransposeis, (R)T=(3 0 5 7 7
1 2 3 3 2 1
9 9

a d

a
Determinant of a Rhotrix : Let R3=<b h(R) > with the coupled matrices of R, as A = [b
e

Then the determinant of |R 3| = |A] |C/h(R)(ae-bd). Thus, the product of determinants of the

coupled matrix is the determinant of the rhotrix itself.[16]

Index Based Representation of an Arbitrary Rhotrix : Unlike in an arbitrary matrix where the
indices of an entry can uniquely be identified by the rows and columns of the matrix, there are
various ways of representing the entries of an arbitrary rhotrix. Usually, an author would employ
a particular method to suit the usage of the object.

One way of representing an arbitrary rhotrix is by the use of a single index for each entry as in
the following: f @ '&

[ & a a

\

l“l
| \
(a, a a, a; a /

\ ayy dyy

\

\
This method is called the single-index method of arbitrary rhotrix representation. The indices
can also be allowed to run horizontally from left to right.
Another way is to use two indices, the first indicating the row in which the entry lies, and the
second indicating the column in which the entry lies as in the following rhotrix. See for the

definitions of a row and a column of a rhotrix.
/

-II
| ay, \
III lI|
/ a;, 2 Gy \
|ll II|
\ 945, 4y dy 4y 4 |
\ f
a a, O /
\ dss !
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A STUDY ON RHOTRIX THEORY

This method is called row-column method of representing the entries of an arbitrary rhotrix since
each entry can be identified by its row and column. In this method the location (or position) of a
row in a rhotrix is identified by the first index in its entries while that of a column is identified by
the second index in its entries. Thus, the first row has 1 as the first index in its entries while the
third column has 3 as the second index in its entries and so on. It is important not to confuse this
with row-column multiplication of rhotrices.

A third method also uses two indices for each entry, where the first index indicates the row in
which the entry lies. However, the second index does not indicate the column in which the entry

lies in the rhotrix. This type of rhotrix representation can be seen in the following rhotrix:

/ a, a,
a,, a, a, a, 4a,
ds; dy; dy /

ag,

It is this method of arbitrary rhotrix representation that is our focus in this paper, and is termed

row-wise method of arbitrary rhotrix representation.[9]

1.3 BASIC PROPERTIES OF RHOTRICES

1.3.1 OPERATIONS OF RHOTRICES

Addition of Rhotrices : Only two rhotrices having the same dimension can be added together.
The sum of the matching elements of two rhotrices is the definition of their addition. Let R; and

Q; be two 3-dimensional rhotrices such that,

T i
Ry = < q y p > and Qg = < s v ow >

2z t
Then their addition is defined as
I i
R:e+f.,):i_<g Yy p>- -+ <S voow >
z t

&+

= <.s'+q vty p—l—u'>

t+ =

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam



A STUDY ON RHOTRIX THEORY

Scalar Multiplication of Rhotrix : In scalar multiplication, the given scalar is multiplied by

each entry in a rhotrix.

I

LCtR3:<q y P>

and o be a scalar number. Then the scalar multiplication of a rhotrix is defined as
i (2.9

a(R3)= “ < qyp > = < aq ay ap >

Z a¥A
Multiplication of Rhotrix : Rhotrices can be multiplied in two different ways. Row-column
multiplication and heart-oriented multiplication are these. While row-column multiplication
resembles matrix multiplication, heart- oriented multiplication is connected to the heart of a
rhotrix.
Heart Oriented Multiplication : As the name implies, we multiply each element of the first
rhotrix by the heart of the second rhotrix, and we add what comes out to the product of the

corresponding element of the second rhotrix and the heart of the first rhotrix.

s

. (I
LetR; = < q p> and 3 = < s v u'>

z t
Let R and Q be two non-zero rhotrices, then from above result, we have

T u TU + uy

R30Q)3 = < q y p > O < s v ow > < qu + sy yu pu 4wy >

z t zv +ty

Identity Rhotrix for Heart-Oriented Multiplication 0

The definition of the 3-dimensional identity rhotrix is I3 = < 010 >

m 0

Here, I, is derived as follows. Let I3 = < n o d > be the identity rhotrix and

xr

1
R;= < gy p > be a rhotrix,where h(Rn) # 0 Since R;ol; = [;,0R; = R; we have

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam



A STUDY ON RHOTRIX THEORY

T T I

(2 el (ons)

n < 2

my + ro xT

_< qo+ 1y oY fy—+po > = < gy p >

z0 + ny z

According to the definition of rhotrice equality, we have
my + X0 =X
qotry=q
oy=y
fy +po=p
zo+tny =1z
By solving the above equations we get
m=n=d=r=0ando=1

iy

0
Therefore, we obtain = < 01 ﬂ> = < roo f >

0 n
Rhotrix Inverse in Heart-Oriented Multiplication

Let h(R) # 0. and R be a 3-dimensional rhotrix. If a rhotrix P exists such that RoQ = PoR =1 then

P is referred to as R inverse. Now, we can get a rhotrix’s inverse by doing the following:

.

LetR= <q Y p>

be a 3 dimensional rhotrix such thaty # 0

T

P = < r o f > is the inverse of P such that

£ m

(vv)e{rea)=(or0)

z n 0

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam



A STUDY ON RHOTRIX THEORY

miy +— ro

0
< go +ry oy fy+po > = < 010 >

zo + ny 0

By definition of equality of rhotrices, we get
my +xo0=0
qgo+ry=0

oy=1
fy +po=0
zo+ny=0

It follows from that o =1/y, m = -x/y*, qr=—q/y*, s=-p/y*andt=-z/y*

@I
R=pP1'==21 < >
: e g —yp

Therefore we have

A rhotrix If h(R) = 0, then R is invertible.

Proof : If R is invertible then there exists a rhotrix P such that RoP =1.
h(RoP) = h(I)
then h(R)h(P) = 1

1
h(P) == ®

h(R) #0.
Remark : . Heart-oriented rhotrix multiplication is a group with respect to the set of all

invertible 3-dimensional rhotrices over R.

Proof: Let Q = {R— < qy p >:_{;7‘D.:r.q.y.;EN}

- m

ax
LetR= <q y p) and S = <(1I n p>

F4 0
be two elements in Q. Then

L 4y

RoQ _< qre + uy yn pn 4+ vy >

zn 4+ oy

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam



A STUDY ON RHOTRIX THEORY

It is evident that the values of y, n, and yn differ from zero. As a result, under heart-oriented

multiplication, the set Q is closed. Again for any R, S, A € S we have
o

(1)

h

@ by d
Ro(SoA) = < a vy p > o { < WU > o < e f g >}
z o I
T rriyyelin
= < g oy p > O < uy + g yr vy +— gn >
z oy + zn
= (RoS)oP

Thus, in the set Q, the heart-oriented multiplication operation is associative. Also,

0
I= < 010 >
0 is the identity of an element of S.
Additionally, the fact that each element of S is invertible suggests that the set S is a group under
the multiplication with a heart orientation. [7]
Row-Column Multiplication : B. Sani discussed row-column multiplication of rhotrices, which

is an alternate technique for multiplying rhotrices. By multiplying each row of the first rhotrix by

each column of the second rhotrix, each element in this approach is obtained.
x

l
Let R;= < g y p > and Q;=: < o mop >

z n
be two rhotrices. Then the row-column multiplication of rhotrices R; and Q5 is given by,

x [ xl 4 po
R300)3 = < qy p > 0 < o m 1 > = < gl + zo my xt + pn >
2z n qt + zn

Identity Rhotrix Under Row-Column Multiplication

[
LetI3=< o m i >

n

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam



A STUDY ON RHOTRIX THEORY

be the identity rhotrix under multiplication defined. Then, for any rhotrix R; we must have

R;ol; =;0R; =R,
e

Let Ry;= JII g h ¢ # 0 Then we have
]

el + ho e

< fl+io gm et + fn > = < f g h >

ft+in i

According to the definition of rhotrice equality, we obtain
el+ho=e
fl+io=f
gm=g
et+fn=h
ft+in=1

It derives from above that | =0 =n=0, 0 =t = 0 provided g(ei — th) # 0. Hence,

1
I:%_<ﬂ 1 0>

1

Inverse of a Rhotrix Under Row-Column Multiplication :

The inverse of a rhotrix Q; is referred to as such if R;0Q; = Q;0R; =15
T f

LetR; = < y z k > and let P; = < g h i > be the inverse,then

[ m

f 1

(elen (o)

/ m 1

~

Therefore,
zf + kg

1
< yf + g zh i+ km > = < 010 >

yi + Im 1

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam



A STUDY ON RHOTRIX THEORY

According to the definition of rhotrice equality, we obtain

xf+kg=1

yf+lg=0

zh=1

xit+km=0

yi+lm=1

_ l =y _ 1. -k _ X
It follows from above that f= Ak & T VT o T T k= s
[
— -l— N

Therefore, Q; =Ry = .,-.'—l_uk —y ! t._ma ke

provided c(xI — yk) # 0.
x
Lett=(1+n)/2 for nEN. By ‘rhotrix’ we understand an object that lies in some way
between
n xn dimensional matrices and (2n-1) % (2n-1) dimensional matrices. The diagonal rhotrix will

be denoted by I and is given by 0

l—<n 1 {1>

0
if the heart oriented multiplication is used, and

if the row column multiplication method is used.
Multiplication of Rhotrices under heart oriented multiplication is

° Commutat1ve:R30Q3= Q30R3
° AssomatlvezP30(R30Q3)=(P30R3)0Q3

e Distributive with respect to addition: P3 0 (R3 + Q3 )= P3o R3 + P3 0 Q3 [15]

1.3.2 Rhotrix Vector Space

Let R 3 be the set of all 3-dimensional Rhotrices over real numbers.Then R 3 is a vector space

with respect to the operations of addition and scalar multiplication of Rhotrices defined as above.

We call it Rhotrix vector space and this vector space is spanned by

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam
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SRNTIBTIRINY

As well as, these vectors are linearly independent, therefore the set

1 0 ' 0 0 0
{<(} 0 U>,<1 0 U),([} 1 U>,<[} 0 1>,<0 0 0)}
0 0 0 0 1

forms a basis to the vector space R3. The set A of all rhotrices forms a vector space which is

spanned by the following vectors(rhotrices):

1] 1 0 1]
1-{0o10), yj={o oo}, K={100), L={0 0 1},
) O A ) A G

0
andM:(ﬁ 0 n>
1

These vectors are linearly independent, therefore,the set = { [,J,K,M } forms a basis for A

Any rhotrix “
R = b h(R) d

[

can be written as a linear combination of the rhotrices in S so that R=aJ + bK + h(R)I + dL + eM

Multiplication table for the basis is given thus:

| o 1| K | L M
FEE ] K L M
i__J—“ T ! — e
| K K o 0 0 0
R 0 0 0 0

M |0 |o o |o

[13]
1.3.3 Square root of a rhotrix
Let A be a rhotrix with positive heart, in this section we will devise a procedure for finding a
square root of A. This procedure will only require heart oriented multiplication .
Given a real symmetric positive definite 3 x 3 matrix A, outline a direct procedure not involving
the singular values or eigenvalues of A for computing a real symmetric positive definite 3 %3

matrix B satisfying B?= A . Since we want to find the square root of a given rhotrix A, it is

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam
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A STUDY ON RHOTRIX THEORY

equivalent to finding another rhotrix B such that A = B? . Now let

a, b,
A={a, h(A) a, jand B={ b, h(B) b,
d, b,

Therefore we want to find b; for i =1,...,4 and h(B ) such that

It follows that h(B) =+/h(A) and

b]’ = ai/Z \lh(A 5 1 :1,..‘,4
An example - Consider the following rhotrix and find its corresponding square root
2

A=(1 1

lad WO

the square root of A is

"SI

o

1.3.4 nth root of a rhotrix

a,
Let 4={ a, h(4) a, | bearhotrix with a positive heart. The nth power of A is the

following a,
na,h(A4)

A" =( na,h(4) k(A"  nah(A)
nah(A)

Since we can easily determine the nth power of a rhotrix, we can use it to evaluate the nth root of
a given positive rhotrix.

It can easily be verified that
b,

B={b, h(B) b

b

is the nth root of A, where h(B) =+/h(4) b,= a/m/h(4),i=1,..4. [1]

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam
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A STUDY ON RHOTRIX THEORY

1.4 : TYPES OF RHOTRICES
1.4.1 SOME IMPORTANT DEFINITIONS

Singleton Rhotrix :- A Rhotrix that has only one element (i.e. heart of Rhotrix) is called
a singleton Rhotrix. A singleton rhotrix is represented as { h(R)), for example { 5 ). In the
above example of the Singleton rhotrix, there is only one element ‘5°.

Equal Rhotrix :- The two Rhotrices are said to be equal if and only if the dimension of
both Rhotrices is the same and also if their corresponding elements are equal. Let us

consider two Rhotrices,

a, a
R3=<b1 (o) d1> and Q3=<b2 G2 d2>
ey €2

Then R; and Q; are equal if a,=a,, b;=b,, ¢c,=¢,, d,;=d,, e,=e¢,.

Orthogonal Rhotrix :- An orthogonal Rhotrix is a rhotrix whose transpose is equal to the
inverse of the rhotrix i.e. R,”* = (R,)" or (R,)(R,") = (R,"*)(R,) =1

Diagonal Rhotrix :- There two types of diagonal Rhotrices - Vertical Diagonal Rhotrix
and Horizontal Diagonal Rhotrix . In the Vertical diagonal Rhotrix, all the elements

except the vertical diagonal are zeros. For example,

1
1 0 2 0
R3=(OZO);R7:00300
3 0 4 0
5

In the Horizontal diagonal Rhotrix, all the elements except the horizontal diagonal are

|

Upper Triangular Rhotrix :- An upper triangular Rhotrix is a Rhotrix, whose all

zeros. For example,

0 0
R3=<123>:R7=12
0

(=R )

0

OO W oo

elements below the horizontal diagonal are zeros. For example,

9>

SO WHE
[e=Te o I8N

o Lower Triangular Rhotrix :- A lower triangular Rhotrix is a Rhotrix, whose all

elements above the horizontal diagonal are zeros. For example,

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam
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A STUDY ON RHOTRIX THEORY

0
0 0 00
RJ_(Z 3 4): R,;=(1 2 3 4 5
5 6 7 8
9

o Left Triangular Knotrix :- A lett triangular Knotrix is a Rhotrix, whose all elements on

the left hand side of the vertical diagonal are zeros. For example,

O s N
Ul Ww
[e)]

e Right Triangular Rhetrix :- A right triangular Rhotrix is a Rhotrix, whose all elements

on the right hand side of the vertical diagonal are zeros. For example,

Owonwe
oo o
o

e Spectrum of Rhotrices :- The set of Eigenvalues of a rhotrix R, is known as the

spectrum of R,.. [13]

1.4.2 EVEN DIMENSIONAL RHOTRIX ( HEARTLESS RHOTRIX)
A Rhotrix “
A={( b d ):a,bde €R}
€

is called a real rhotrix of dimension two. This is a set of all two even-dimensional (heartless)
rhotrices. We shall simply refer to these even - dimensional rhotrices as heartless rhotrices with
an acronym hl-rhotrices. Accordingly, the cardinality of n-dimensional real hl-rhotrix is denoted
as |R.(R)| = 5(n® + 2n) . where n € 2N. This implies that all hl-rhotrices are of even
dimension. Therefore, all hl-rhotrices are rhotrices but all rhotrices are not hl-rhotrices.
Operations

e Addition of hl-Rhotrices - by

Consider 2 Rhotrices A ={ ay a2 >: B = < boy bis >
We define addition (+) by e "

a1 ()11 ap + bll
A+ B= < an (12 > -I—< ba1 bio > = < a1 + ba aiz + bia >
gz + bay

a2 b2

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam
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A STUDY ON RHOTRIX THEORY

It can easily be shown that (A, +) is a commutative group with the zero and negative

elements being:

g —an
0= < 0 0 > Ao .
0 and 4T\ T @2 ) respectively.

—a22

e Scalar Multiplication
The scalar multiplication is defined as follows: If AL & R is a scalar and A is a hl-rhotrix,
then Sollih < B " iy > = < Xty . etag > .
92 Adaa
e Multiplication of hl-Rhotrices
The multiplicative operation of hl-rhotrices will be the row-column multiplication. This
method as proposed by Sani is naturally suitable for hl-rhotrices.
Hence, we define multiplication as follows:

a11bi1 + a12bar

a1 bll
AoB = < ag1 412 >o< boy bis > < az1b11 + azzbay ai1biz + aizbas >
ase a21b12 + azzbas

b2z
In other words, the multiplication of higher hl-rhotrices is still according to Sani with the

empty heart treated as null element or zero-valued element. Treating our rhotrices this

way allows us to see the higher dimensional hl-rhotrices as coupled matrices with the

lower dimensional squared matrix (minor matrix) coupled in the higher dimensional

squared matrix (major matrix).

It can easily be verified that the set of all hl-rhotrices with multiplicative operation

defined this way is a non-commutative algebra.

e Identity element

Consider an hl-rhotrix A of n-dimensional, if I is also an hl-rhotrix of n-dimensional such

that: Acl=A=1-A.

Then I is an identity element. j

For a 2-dimensional hl-rhotrix, the identity element is given as: = < U >
A 2-dimensional identity hl-rhotrix is presented for illustration purpéses. For higher

hl-rhotrices, the identity element is reduced accordingly by allowing entries at the major

diagonal to be unity except at the centre which is empty while other entries are zeros. We

speak of a major diagonal because we are seeing our hl-rhotrices as coupled matrices.
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e Inverse of an even dimensional Rhotrix
The concept of identity element makes the inverse of an hl-rhotrix meaningful. If for any
hl-rhotrix A, we can find another hl-rhotrix X such that :
AeX=XA=],
then X will be the inverse of A.

For example, let

a d ] e
. an o o _
A—<b d> X_ae—bd< b d>
e a

Then, 1 e
71 _ N o
A7 = ae — bd < b d >

a
provided ae 6= bd. Otherwise, A will be called a singular hl-rhotrix.It is to be noted that

the majority of the heart-based rhotrices with a non-zero heart
are non-singular or invertible rhotrices. Not all hl-rhotrices are invertible.
Properties and examples
Given any m-dimensional hl-rhotrix, m & 2N and m >4 . The following hold:
e The heart will be missing from the major matrix if the dimension (D,,) lies in the set
below: {Dgi4n: n € N}
e The major matrix is called a surrogate major matrix if the dimension D,, of a hl-rhotrix
lies in the set below: {Dgi4n : n € N}.
e The heart will be missing from the minor matrix if the dimension (D,,) lies in the set
below: {Dgian: n € N}.
e The minor matrix is called a surrogate minor matrix if the dimension D,, of a hl-rhotrix
lies in the set below: {Dgian : 1 € N}.

The set A of all hl-rhotrices form a vector space which is spanned by the following vector
1 0 0 0
(rhotrices) I=<0 0>;J=<0 1>;K=<1 0>;L=<0 0>.
0 0 0 1
These vectors are linearly independent, therefore, the set S = {I, J, K, L} forms a basis for a
a
2-dimensional hl-rhotrix (R,). Any 2-dimensional hl-rhotrix (A), A= < b d >
e

can be written as a linear combination of the rhotrices in S so that,

A =al+bK+dK +eL.
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Now, we can look through some examples of higher dimensional heartless Rhotrices with their

coupled matrix alone.
If R, is an hl-rhotrix, then R n will denote the corresponding coupled matrix.

e A hl-rhotrix of dimension four (R4) is given by:

an

a1 C11 12
Ry = az1 €21 Ci2 Q13 .

G3z Cg2 (33

@33

Then its corresponding coupled matrix will be presented below:

C
Ri=| an ass | -
€21 C22
asy as2 as3

Because of the absence of a heart, we have a surrogate 3 x 3 matrix (major matrix) coupled with

a 2 x 2 matrix (minor matrix). Representation of heart-based rhotrices(h-rhotrices) into coupled

matrices was introduced by Sani. In this case of R4, the missing heart is in the surrogate matrix.
e A hl-rhotrix of dimension six (R6) is given by:

€11

Gz1 €11 Qg2

31 C21 Q22 Cl12 @13
Rg = Q41 C31 A3z @3 C13 COg ;
(g2 Cz2 A3z Cpz (g

a4q3 €33 34

(44

Then its corresponding coupled matrix is:

a1 @12 13 14
€11 €12 Ci3

a21 a2 23 24

Rg = €21

31 32 @33 @34

C31 C32 C33

41 42 ayq3 g

In this case of R,, we have a surrogate 3 x 3 minor matrix and the 4 x 4 major matrix. The
missing heart is in the surrogate 3 x 3 matrix.
Comparison between odd and even dimensional rhotrices [16].

The similarities and differences between h-rhotrices and hl-rhotrices are presented below:
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h-rhotrix hl-rhotrix
1 Equal row and column Equal row and column
2 The heart exists The heart does not exist
3 | Mostly invertible, provided the heart is not zero Not all are invertible
4 It gives two squared-coupled matrix It gives a squared-surrogate coupled matrix
5) Odd dimensional Even dimensional
6 |Rn| = 3(n?+1),ne€2Z* +1 |Ra| = 3(n®+2n),n € 2N
& |R,| = m where n, m are both odd |R,—1| = m — 1 (both even)

1.4.3 CLASSIFICATION OF RHOTRICES OVER NUMBER FIELDS
Natural Rhotrix:- A rhotrix is called a natural rhotrix if all its entries belong to the set of natural

numbers. For example, =
Ri(X)=<{b ¢ d ):a,b,c,d,ee X

e
is the set of all three dimensional natural Rhotrices. Furthermore, the set of all natural rhotrices

of the same dimension n, together with the operations of addition (+) , scalar multiplication ()
and multiplication (o) forms the natural rhotrix space.

Integer Rhotrix:- A rhotrix set is called an integer rhotrix set if all its entries belong to the set Z
of integer numbers. Furthermore, the set of all integer rhotrices of the same dimension n,
together with the operations of addition(+), scalar multiplication (o)) and multiplication (o) forms
the integer rhotrix space.

Rational Rhotrix :- A rhotrix set is called a rational rhotrix set if all its entries belong to the set

a

of rational numbers. For example, » , .
Q u Xampie, p.@)=4{b ¢ d):abcdecQ’

e

is the set of all three dimensional rational rhotrices. Furthermore, the set of all rational rhotrices
of the same dimension n, together with the operations of addition (+) , scalar multiplication (o)
and multiplication (o) forms the rational rhotrix space, denoted by the pair 1%,1 (Q),+,0
Irrational Rhotrix :- A rhotrix set is called an irrational rhotrix set if all its entries belong to the
set Q° of irrational numbers. Furthermore, the set of all irrational rhotrices of the same dimension
n, together with the operations of addition (+) , scalar multiplication (a) and multiplication (o) do
not form a space of irrational rhotrices. Because, the set of irrational rhotrices of the same
dimension n is not closed with respect to rhotrix multiplication (o) . Thus, we refer to this space

as non-irrational rhotrix space.
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Real Rhotrix :- A rhotrix set is called a real rhotrix set if all its entries belong to the set of real
Numbers. For example, a
;33(91) ={b ¢ d):ab,c,d,eecR

e
is the set of all three dimensional real rhotrices. Furthermore, the set of all real rhotrices of the
same dimension n, together with the operations of addition (+) , scalar multiplication (o) and
multiplication (o) forms the real rhotrix space, denoted by the pair R, ), +,0
Complex Rhotrix :- A rhotrix set is called a complex rhotrix set if all its entries belong to the set
C of complex numbers.

For example,
a

‘IA?3(C)= b ¢ d):ab,c,d,ecC
e

is the set of all three dimensional rational rhotrices. Furthermore, the set of all complex rhotrices
of the same dimension n, together with the operations of addition (+) , scalar multiplication ()
and multiplication (o) forms the complex rhotrix space, denoted by the pair | g, (C),+,0

The rhotrix sets we have categorized over number fields satisfy the chain of rhotrix sets
inclusions, given by IAQ,,(N) = IAQ,,(Z) e IAQ,I (4 f= IAQ,, e IAQ,,(C)

Analogously, the rhotrix spaces we have categorized over number fields, satisfy the chain of

rhotrix spaces inclusions, given by

[fe,, (x),+,oj c (fe,, (Z),+,oj c (fe,, (Q),+,oj c [R (R), +. oj c (fen(C),hoj
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Chapter 2

COMPARISON OF MATRIX THEORY AND
RHOTRIX THEORY

2.1 COMPARISON OF MATRICES AND RHOTRICES

Algebraic Properties :
Matrices and rhotrices show similar behaviour when it comes to their algebraic properties. Some
of the properties are listed below [4] :

A+0=0=A=A

A+B=B+A

(A+B)+C=A+B+C)

a(A+B)=AB+ AC

AB+C)=AB+ AC

A(BC)=(AB)C

Al=A=1A
Here, when applied to rhotrices, 0 implies the zero rhotrix of corresponding dimension,
multiplication operation used is the row-column based multiplication, and I is the identity rhotrix
of the appropriate dimension corresponding to row-column multiplication.
Elementary Row Operations :
Three elementary row operations can be performed on a matrix representing a linear system of
equations without changing the nature or values of the system of linear equations:
Interchanging rows
Multiplication of a row by a scalar to give a new row
Adding a row with other rows
The same is applicable for columns as well. These elementary operations can be applied to

rhotrices representing two linear systems of equations without any change in their solutions. It is
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important to note that these operations can only be performed using two major rows or two

minor rows, and not between one major row and one minor row.

Rank of Matrices and Rhotrices :
The rank of a matrix A, denoted by rank(A), is defined as the number of non-zero rows in its

row-reduced echelon form. Similarly, rank of an n-dimensional rhotrix can be defined using the

n+1

—— and %1 respectively.

major and minor matrices in its coupled matrix form with dimensions

This approach opens possibilities for many properties of matrices related to their ranks to be
extended to rhotrices.
Let Rn= (aij , Cu» be the coupled matrix form of an n-dimensional rhotrix R. The rank of R can
be defined as
rank (R) = rank (a;) + rank (cy)
Using this, we can obtain the following results for two n-dimensional rhotrices R and S:
rank (R) < n
rank (R + S) < rank (R) + rank (S)
rank (R) +rank (S) -n < rank (RS)
rank (RS) < min{rank (R), rank (S)}

Filled Coupled Matrix :

For any odd integer n, the n-dimensional square matrix a;is called a filled coupled matrix if a;=
0 when i+j € 2Z"+1. These entries are called null entries of the filled coupled matrix. A filled
coupled matrix can be defined corresponding to every rhotrix, and the dimension of the filled
coupled matrix will be the same as the dimension of the rhotrix.

Gaussian elimination, followed by back substitution, can be performed on the filled coupled

matrix to solve the systems of linear equations [2].

2.2 VECTOR SPACES [2]

Representation of vectors: The representation of vectors in matrix form and rhotrix form are

vastly different from each other.
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0

0O 0 0

0 0 0 0
an ... e e e 0
T is an n-dimensional rhotrix row vector, and

ay—> 0 0 0 0

ag—y 0 0

an
[75)] 0 0

72 0 n+1

2

1s an n-dimensional rhotrix column vector, where t =

-

While matrix row vectors or column vectors have unique representations, a rhotrix row vector or

column vector can be represented in t different ways. For example,

(D 2) 3)
X1 0 0
0 0 x x1 0 0 0 0 O
0 0 0 0 x3 0 0 x 0 0 xx 0 0 0 0
0 0 0 0 0 X3 X2 0 0
0 0 X3

the rhotrices (1), (2), and (3) are different representations of the same five-dimensional rhotrix

row vector whereas a three-dimensional row vector is uniquely represented as (xl, X, x3).

Definition of a rhotrix vector space:

A thotrix vector space (V) over the set of real numbers is a non-empty set of rhotrix vectors with
two operations vector addition and scalar multiplication, obeying the ten axioms of vector space
in linear algebra. A non-empty set of matrix vectors with the operations vector addition and

scalar multiplication obeying the ten axioms of vector space is called a matrix vector space.
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Properties : Let a, b, and ¢ be three n-dimensional vectors with the same representation. Let o
and 3 be two real numbers. The three vectors obey the following properties whether they are
matrix vectors or rhotrix vectors.

1) a+0=a, where 0 is the corresponding zero vector

2) 0-a=0 ,where 0 is the real number

3) atb=b+a

4) (a+b)tc=a+(b+c)

5) (-)-a=-a

6) at(-a)=0

7) lra=a

8) a(a+tb)=aat+ab

9) (a+P)a=aa+P-a

10) (aP)-a=a-(B-a)
Linear Dependence :
The vector space (V) is said to be linearly dependent or ,simply, dependent if there exist a set of
scalars(not all of which are zero) in the set of real numbers and a set of vectors in (V) such that
their linear combination equals to zero. [12]
If the linear combination gives zero only when all the scalars have the same value that is equal to
zero, then (V) is called linearly independent or, simply, independent.
Linear Mapping and Dimension of Vector Space :
In linear algebra, the concept of representing linear mappings as matrices is of great importance.
Since the dimension of a rhotrix is always odd, it follows that, in representing a linear map T on
a vector space (V) , the dimension of (V) has to necessarily be odd. This restriction does not
occur in the case of matrix linear maps. The rhotrix representation of a linear mapping over an
odd-dimensional vector space (V) can be transformed to a matrix linear map where the matrix
will be the filled coupled matrix of the rhotrix.
Cramer’s Rule :
Cramer’s rule is a method for finding solutions to systems of linear equations with an equal
number of equations and unknowns. In linear algebra, Cramer’s rule uses the matrix
representation of the linear mapping to solve the system of linear equations. This can be
extended to rhotrix linear mappings to find solutions to systems of linear equations represented

by the rhotrix. [11]
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Cayley-Hamilton Theorem :

The Cayley-Hamilton theorem is a cornerstone of linear algebra, establishing a profound
relationship between a matrix and its characteristic polynomial. This theorem has far-reaching
implications in various fields, including engineering, physics, and computer science.

The Cayley-Hamilton theorem for matrices states that every square matrix satisfies its own
characteristic equation. This means that if we substitute the matrix 4 into its characteristic
polynomial, the result is always the zero matrix.

The concepts of eigenvalues and eigenvectors have been established in the literature regarding
rhotrix theory. Eigenvalues of a rhotrix are the solutions to the characteristic polynomial obtained
for that rhotrix. It is also to be noted that the Cayley-Hamilton theorem can be extended to
rhotrices. The equivalence of the result has been established by Abdulhadi Aminu in 2012 in his
paper titled “Cayley-Hamilton Theorem in Rhotrices”. The theorem says that every rhotrix

satisfies its own characteristic equation.
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Chapter 3
SOME CONCEPTS OF RHOTRICES

3.1 RHOTRIX EXPONENT RULE
THEOREM

Let R be a rhotrix. Then for any integer values of m,

ma
R" =(W(R)™"( mb hR) md

me

(Let this be equation 1).

In particular,

(i) R is the identity of R and

(ii) R is the inverse of R.

PROOF

We shall establish this theorem using the principle of mathematical induction. First, we consider
the case for positive integer values of m. The result is certainly true for m=1.Now suppose it is

true for m=k. Then,we have,

ka
R"=(W(R)*'( kb hR) kd
ke
ka a
R“' = RoR' =(WR)"'( kb h(R) kd)o( b hR) d
ke e

/ (k+1)a \
= R" =(W(R)*{ (k+1)b HR) (k+1)d
(k+1)e
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Thus, the theorem holds for the power (k+1)and so it is true for any positive integer. Next, if m is

a negative integer, write m =-k , so that k is a positive integer. Then by the definition of quotient

rhotrix , we have I I < kg >
R"=R*"=—>= =(hWR) " ( kb HR) kd
: >

R X }
(WR)" kb HR) kd ¢

ke

1 ka -ka
R = R = (W R Y = ~( kb -HR) kd)=(HR) kb HWR) -kd
. Y™ G\ 18 =B )= B @

Provided, h(R)#0. Therefore, the theorem holds for all negative values of m. Finally, if m=0,

we have: | (k-k)a
R=——((k-k)b hR k—k)d
= (h(R))( ) {bfk))e( )
0
=R'=(0 1 0
0

Thus, the theorem holds for the power m = 0.

Hence, the theorem is true for all integer values of m.

As a corollary to the theorem on rhotrix exponent rule, we have the following:
1) If m =0 and m = -1 in the previous theorem . Then

(1) R’ is the identity of rhotrix R and

(ii) R'is the inverse of rhotrix R respectively.

Proof. (i) If m=0 in previous theorem, we have:

0
R=(0 10
0
Therefore, RoR°=R°oR=R
Hence, R is the identity of rhotrix R.
(i1) If m = -1 in the previous theorem , we have:

—a a

1 -2 -1
R =(AR -b hAR) —-d)= b —hR) d
(A(R)) (R) R (R)

Thus, R is the inverse of thotrix R.[3]
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The following corollary is obvious:
Corollary
If R is a unit heart rhotrix then we have for any integer values of m,

ma
R"=(mb 1 md

me

PROOF
Substituting h(R)=1 in equation (1), then the result follows.

Properties of the rhotrix exponent rule:

(a) Rm ° RIJ — RJI;H-H

(b) 1}; = R™", provided, h(R) # 0
’ m
© (R")" = R"

(d) (RIII )n — RHIn
(e) (kR)" = k"R" (Where k is a scalar)

(H R’ =1 (Wherelis the identity of R)
I
(g R'= I =1Io R, provided, h(R) # 0

(h) R™ =0 (or zero rhotrix), provided A(R) =0 and m>2

3.2 : RHOTRIX LINEAR TRANSFORMATION

Rank of a Rhotrix :

Let R = {gﬁ_xch } , the entries g_ (1£r<t) and ¢, (1=s5=1-1)in the main diagonal of the
major and minor matrices of R respectively, formed the main diagonal of R. If all the entries to
the left (right) of the main diagonal in are zeros, is called a right (left) triangular rhotrix. The
following lemma follows trivially.

Lemma :

Let, R, =(a,.c,} isaleft (right) triangular rhotrix if and only if {a,) and (c,) are lower

(upper) triangular matrices.
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Proof :

This follows when the rhotrix n is being rotated through 45° in an anticlockwise direction. R

In the light of this lemma, any n-dimensional rhotrix can be reduced to a right triangular rhotrix
by reducing its major and minor matrix to echelon form using elementary row operations. Recall
that, the rank of a matrix (A) denoted by rank ( A )is the number of non-zero row(s) in its

reduced row echelon form. If, R, ={a,.c,} we define rank of R denoted by Rank (A) as:

rank ( R = rank | a; |+ rank (¢, ) 3)
Example : -
Let, f 1 I"'.
[0 22 |
4={1 -1 3 1 2)
Vo211

Then, the filled coupled matrix of A is given by
(1 0 -2 0 2)

0o 2 0 10
m(d)=|0o 0o 3 0 1
0 -1 0 1 0
1 0 -2 0 2
Now reducing m(A) to reduce row echelon form (rref) , we obtain
(1 0 -2 0 2
0o 2 0 1 0
ref (m(4))=|0 0 3 0 1
o0 0 30
Vo 0 0 00
which is a coupled of (2 x 2) and (3 x 3) matrices, i.e.
(1 -2 2)
72 00 l
Al(say)=| | and B(say)=|0 3 .
0 3 ! respectively.
lo o o

Notice that,
rank( 4 )+ rank( B)
=2+2=4= Iaﬂk{f?'ﬂf{f”{.’i]-}lj.

Hence, =rank(4)=4.

Rhotrix Linear Transformation : One of the most important concepts in linear algebra is the

concept of representation of linear mappings as matrices. If V and W are vector spaces of
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dimension n and m respectively, then any linear mapping T from V to W can be represented by a
matrix. The matrix representation of T is called the matrix of T denoted by m(T) . Recall that, if
F is a field, then any vector space V of finite dimension n over V of finite dimension n over F is
isomorphic to F". Therefore, any n x n matrix over F can be considered as a linear operator on
the vector space F" in the fixed standard basis. Following these ideas, we study in this section, a
rhotrix as a linear operator on the vector space F".Since the dimension of the rhotrix is always
odd ,it follows that ,in representing a linear map T on a vector space V by a rhotrix ,the
dimension of V is necessarily odd . Therefore, throughout what follows, we shall consider only
odd dimensional vector spaces.For any n belongs to 2Z"+ 1 And F be an arbitrary field, we find
the coupled F', F*',of F*

F' ={{ﬂ"1.£¥3.---.ﬂ'r }|af1_---.af, EF} and

F™ ={(B- By B,)| B By By € F'H | by

{Fr-Fr_] ]| = {{&'1 @y By By By )
oy .y B By By € F'r}_
It is clear that (Fr.F) coincides with F™and so, if 7= 2Z7 +1 any n-dimensional vector
spaces V1 and V2 is of dimensions # and ”—:1—1 respectively. Less obviously, it can be
seen that not every linear map of T of FLn can be regresented by a rhotrix in the standard basis.
For in§tance2 the map

T:F" = F°
Defined by T(x.y.z)=(x—y.x+z.y+z) is a linear mapping on F* which cannot be represented
by a rhotrix in the standard basis. The following theorem characterizes when a linear map T on
F" can be represented by a rhotrix .
Theorem :
Let 7=2Z7 +1.and F be a field. Then, a linear map 7T - F" s F" can be represented by a

rhotrix with respect to the standard basis if and only if T is defined as

T(x. 0. %. ¥y Ve X, )

=(a (x. 2. ) B (. Y Vg )

ay (5.3, % ). By (3. 3y B ) n+1 .
_ y where f=— and §,.---. 5, are any linear
B -y ¥ ) (X050, x, .]:|- =

mapon F' and F™ respectively.
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Proof:

Suppose I - "= F" s defined by
T(2%. 002, Y32 Ve X, )
=(@ (x5 .5 ). B (.30 V)

oy I::-‘C],X;-----Ji'_,].,d?g E:."1>J';-"'-."_r-1]-'">

Ba(n.¥. ¥ )- @ (x.%.-.%, ). where, ;=”T+1ﬂ_______gr and B.---. 5,
are any linear map on F' and F"' respectively, and consider the standard basis
{(10.--.0).(0.1.0.---.0).--.(0.0.--- 1)} .
Note that for, 1=7=<f and 1= <¢-1.Since @.8; are linear maps
Thus ,
T(10.--.0)=[&/(1.0.--.0).0.--. e, (10.---.0)]

T(10.--.0)=[0.4(10.--.0).---. 8 (1.0.---.0)]

: (5)
T(0,--,0.1)=[0.4(0.---.0.1).---. B, (0.---.0) 1]
T(0.--.0.1)=[ & (0.---.0.1).0.--.a, (0.0.---.0.1)]

3\
Let &’.;,-=:x,-| 0,--., 1 .0 for
: Y i~ —position S
(12i.j<t) and By =80 1 .-.0|
© L T Beposton” )
for (1=k./=t-1). Then from (5). we have the matrix
of T is
ey 0 @ . @, 0 o, |
|0 A 0 . 0 Ay 0
(6)
- 0 r3r—'..r 0 0 JB:—Ir—] 0
I'x oy 0 & e D 0 oy .

& -ﬂ.i."::l

This is filled coupled matrix from which we obtain the rhotrix representation of T as {
Conversely:

Suppose 7-F" s F" has a rhotrix representation ( a, . ﬂi.-'?’ in the standard basis. Then, the
corresponding matrix representation of T is the ﬁlleld Jcouplled given in (6) above. Thus, we

obtain the system
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T(L0.---.0)=(ay.0.095. .0y, 0.y, )
T(10.---.0)=(0.5,,.0.---. f;,.0)

: (7)
7(0..0.1)=(0. 1.0, f31.0)
T(0.---.0.1)=(a,.0.a,. ., .0.a, ]

From this system ,it follows that for each (x.3,.x5.35.---.%,5.%, )€ F" we have the linear
transformation T defined by
T(x. 31532 Yy Ve Xy )
= [;ﬂ". (%55 % ). B (3.3 ¥a)-
@y (.. ) By (v vy v )

B (-2 Yo ) (%35, }.L

where , n+l1 are any linear map on
R and B,.---. B y p

F' with @0 1 _-0]|=a,

with | B _position J : “E.?jﬂi‘:l and

for

Blo- 1 0|=g, for

S (1kI<t-1).
Example :-

Consider the linear mapping T % — 9 defined by T'(x,y.z)=(2x—-z.4y.x—3z).To find the
rhotrix of T relative to the standard basis .We proceed by finding the matrices of T .

Thus ,
T(10,0)=(2.0.1)
T(0.1,0)=(0.4,0)
7(0.0.1)=(-1.0.-3)

Therefore , by definition of the matrix of T with respect to the standard basis , we have

(2 0 1)
m(T)=| 0 4 0
-1 0 -3/
which is the filled coupled matrix from which we obtain the rhotrix of T in R3,
/ 2
r(r)={-1 4 1)
o

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam
31



A STUDY ON RHOTRIX THEORY

¥

Now starting with the rhotrix 7(T)= -1 4 1 .' the filled coupled matrix of »(T) 1s| 0
| _3 II'

=

(=]

And so. defining T:R, — R,
T(1.0.0)=2(1.0.0)+0(0.1.0)+1(0.0.1)
T(0.1.0)=0(1.0.0)+4(0.1.0)+0(0.0.1)
T(0.0.1)=-1(1.0.0)+0(0.1.0)—3(0.0.1)

Thus, if (x.y.z)=x(10,0)+»(0.10)+z(0.0.1).
Therefore,

T(x.y.z)=xT(L0.0)+yT(0.1.0)+=zT(0.0.1)
=x(2.0.1)+y(0.4.0)+z(-1.0,-3)

=(2x—z,4y,x-3z)
[4].

3.3 SOME CONCEPTS OF RHOTRIX TYPE A SEMIGROUPS

R is any rhotrix while Rn is an n-dimensional rhotrix.

Definition : Suppose R = (al,j, ¢, is an n-dimensional rhotrix, then the determinant of R_is
given by, det(Rn) = det(At ) det (C . 1) where At and C ,_,re two square matrices of dimension
(txt)and (¢ — 1) x (¢t — 1) respectively which make up the rhotrix Rn with ¢t = (n+1)/ 2 and

ne27 +1.

Remark : A rhotrix Rnis said to be invertible or non-singular if the determinant is non-zero. That

is, Rn is invertible if det (Rn) #0.

Theorem : For any rhotrix R # 0, R®=0ifand only if h(R) = 0 where 0 is the zero rhotrix.
Theorem :

a
Let R = (b h(R) d ) be any rhotrix of size 3, then for any jnteger m,
e ma
R™ = (h(R))™~1 (mb h(R) md).
me
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In particular, R’and R are the identity and inverse of R respectively, provided h(R) is non-zero.
Proposition : Let A, B and C be three rhotrices of the same size with entries in R, then the
system of linear equations resulting from A © B = C has

1) a unique solution if and only if h(A) # 0 and h(C) # 0.

ii) an infinite solution if and only if h(A) = h(C) = 0.

iii) no solution if and only if h(A) = 0 and h(C) # 0.

Theorem : The rhotrix semigroup (Rn (F),°) is embedded in the matrix semigroup (Mn (F),.)

Remark : Given the map 6 IRn(F) —M_ (F), the image set (Rn (F))0 is a subsemigroup of
M , (F) consisting of all filled coupled n x n matrices. Using the Green’s relations £, &, ¥, & and

7, the following results was obtained.
Theorem : Suppose A, B ¢ R; (F),then

1) A £ B if and only if im (A) = im (B).

ii) A R B if and only if ker(A) = ker(B).

iii) A ¥ B if and only if im (A) = im (B) and ker(A) = ker(B).

Lemma :

Let S be a semigroup and e be an idempotent in S. Then the following are equivalent in S

1)a R e

il)ea=a andforallx,y(S1 , Xa = ya = xe = ye.

Definition : The relation ¢ on a type A semigroup S is defined by the rule that (a, b) € ¢ if and
only if ae = be for some e € E(S). It is known that ¢ is the minimum cancellative congruence on
S. It is important to note that ¢ can also be written as a ¢ b if and only if fa = fb for some
feE(S).

RHOTRIX TYPE A SEMIGROUP

This section focuses on the construction of a rhotrix type A semigroup and the properties
embedded in the semigroup constructed.

Now let Rn(F) be a set of all rhotrices of size n with entries from an arbitrary field F. For any

An ,Bn( Rn(F), define a binary operation ° on Rn(F) by the rule:

n+1

t t—-1
Ay © By =Aa,j,, Cii, ) © biyjyr iy, = (26, (@i, by, ) s X =1 (Crae, iy, )) o = —

where An and Bn denote n-dimensional rhotrices.
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Theorem : §=( Rn(F), ° ) is a semigroup.
Proof. Let An ,BnA € S, we have that det(An) #0and det(Bn) # 0, so that An ° Bn € S, since det(
An ° Bn) = det (An) x det (Bn) # 0. It follows that S is closed under the binary operation.

Next is to show that S is associative.
Suppose  An = (@i, ik, ) Bn = biyj, diie, )y Cn = Uiy jys Vigies s
then we have that An ° (Bn © Co) = (@i, e, © ({biyjy digiey) © (Wi Vigie,))
= (@i,jy, i) © (o (Biz o Uisjs) » By =1(diyk,Visks )
@12;1_1 i1j1 [ 13;2-1(512;2 13;3)] lekl—l Ilkl[ I3k2- (d12k2v13k3)] )

(212;1_1 [3j2=1 iljl(bizjzuigjg) Ez Rl-lZI;R2=lcilkl(d12R2vI3R3))

Consequently, An ° (Bn ° Cn) = (An ° Bn)o Cn'

Therefore S is a semigroup.

Lemma- Let (a c.), (b d ) ¢S=(R (F) ). Then we have

7 Cik
1)(a r lk}R (b d >1fand only 1fa R b andc R dlk.
11)(a r lk}L (b d )1fand only ifaijL bl,j and clkL de'
iii)(aij, clk) H (bij,dlk)ifand only ifal_,}[ bi_and clkﬂ-[ dlk.

Proof. i) Suppose (a )R (b d ) then for (x X, ), (yl,,, ylk) ¢ S we have

i lk
() 0, €0 = 0 v, (@ ) o (e, Xb oy )= (0, v, b dy)
:><xl]alj xlkclk> <yijaij’ ylkclk>® <xi lk lk>_ <yl] ij’ ylkdlk>

n ntl h = Sx .
Consequently, we have x a, =y a,.x ¢, =y,c, = x b =y b, . x,d, =y,d,

This implies that al_j R bi]_ and C R dlk
Conversely, let a, R bij and (o R dlk, then there exists arbitrary elements XoY€ M t(F)
and XY € M t—l(F) such that xl,jaij= yija,, = xijbij = yljbi] and X, €= Y8 xlkdlk ylkdlk

It follows that

G x4a, ¢ )=,y ) a, ¢ ) e, x Xbd )=,y Xb.d, )

Thus ,(aij, c k) IR (bij,dlk ).

Department of Mathematics, St. Teresa’s College (Autonomous), Ernakulam
34



A STUDY ON RHOTRIX THEORY

Lemma :

Let (aij, Clk> eS=( Rn(F), ° ). Then (ai]_, clk) ¢ E(S) if and only if a, ¢ E(M t(F)) and
¢, EQM_ (F)

Proof. Let (ai],, clk) ¢ E(S), then we have that

<aij’ Clk>o<aij’ Clk> - <aij’ Clk>

= <aijclk’ Clkclk> B <aij’ Clk>

Consequently,

2 . .
(aij) = al_j (where al_j eM t(F ) is a square matrix)

2 ) )
(Clk) = clk(where C, € M t—1(F) is a square matrix).
Thus aij( E(M t(F)) and C, € E(M t—l(F))

The converse of the proof can be easily verified.

Example : The following rhotrices are idempotents in R 5(F);

2 2 -2 —4
. )‘[ L 6
- 1 -2 -3
—2 0 4
-3
2 2 -2 -4
-1 3 -2 =(-1 3 4[> °)
1 1 3 -6 —4 i o _4’"t -2
—2 -2 4
3
2 2 -2 —4
B e
-1 - 1 -2 -3
—2 -3 4
2 -2 —4
o [0 0B 6114 -1
It is obvious that[—ll 32 43 ¢ B(M (F)) while [0 0]*[1 _211[12 _3]‘E(MC_1(F))
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Chapter 4
APPLICATIONS OF RHOTRIX THEORY

4.1 APPLICATION OF RHOTRIX THEORY IN CRYPTOGRAPHY USING
MODIFIED VIGENERE CIPHER
METHODOLOGY

Encryption
Consider a plain text that is to be encrypted. Let m be the number of letters in the plain text.

Step 1: Convert the plain text into a stream of numerals using the scheme given below.

A B C D E F G H I I K L
1 2 3 4 5 6 7 g 9 10 11 12
M N O P Q E 5 T U V W X
13 14 15 16 17 18 19 20 21 22 23 24
Y Z _ ? ! . . ] "

25 26 27 28 29 30 31 32 33

Step 2: Now, organize these streams of numerals into a rhotrix according to the specified cases
Case 1: If m = (n*>+1)/2, where n = 3,5,7...

Directly place the numerals into a rhotrix of order n. We call this rhotrix as the message rhotrix.
Case 2: If m # (n>+1)/2

Then, repeat the plain text numerals sequentially until m attains the value ( +1)/2

Now, convert this extended plain text into a stream of numerals using the same scheme
previously used, and organize these numbers into a rhotrix of order n, to obtain the message
rhotrix.

Step 3: Choose a key of length I > m. Convert the key into a stream of numerals using the above
scheme.The key is repeated sequentially until its length matches that of the plain text. Now
organize the equivalent numerals into a rhotrix of order n, called the key rhotrix.

Step 4: Multiply the message rhotrix with the key rhotrix to obtain the encrypted rhotrix.

Step 5: Convert this rhotrix to a stream of numbers. This is the encrypted code to be send to the
receiver.

Decryption

Step 1: Place the encrypted stream of numbers into a rhotrix.
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Step 2: Multiply the encrypted rhotrix with the inverse of the key rhotrix, we get the decrypted
rhotrix, same as the message rhotrix.

Step 3: Convert this rhotrix to a stream of numbers.

Step 4: Convert the stream of numbers back to text using the original scheme. Remove the

repeated segments of the plain text to obtain the original plain text.

ILLUSTRATION

Encryption

Consider the plain text | AM FINE !

Here, m = 11. Repeat the letters of the plain text until it contains 13 letters. Now the plain text to
be encrypted becomes

I AM FINE !

Convert this plain text, to numbers using the scheme.
I A M FINE ! I

927 1 13 27 6 9 145 272927 9

Now organise these numbers into a rhotrix.
9

6 13 27/
295 9 271
9 27 14
27 This rhotrix is the message rhotrix.

Let ‘BE’ be the key used to encrypt the message. Repeat this key until the length of the key
becomes the same as the length of the plain text to be encrypted. Convert this key to numbers

using the same scheme.
BEBEBEBEBEBERB

2525252525252
2

555
Now organise these numbers to a rhotrix. <2 2292 2>
555

2
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This is the key rhotrix.

Now multiply the message rhotrix and key rhotrix.

This is the encrypted rhotrix. Now convert this rhotrix into a stream of numbers.

369920717257 187328997663 72

This is the encrypted code to be send to the receiver.

Decryption

Place the encrypted stream of numbers into a rhotrix.

36
57 71 99
76 28 18 72 20
63 99 73
72

Find the inverse of the key rhotrix.

555 yza
29228 bcdef —
555 hlJ
-1/2
yza -5/4 -5/4 -5/4
bcdef -1/2 -1/2 1/2 -1/2 -1/2
hlj -5/4 -5/4 -5/4

-1/2

|
o
ocoo
oOoor OO
ooo
o

Now multiply the encrypted rhotrix with the inverse of the key rhotrix.

=142
57 71 99 -5/4 -5/4 -5/4 6 13 27
76 28 18 72> -1/2 -1/2 1/2 -1/2 1;> é 59 27>
63 99 73 -5/4 -5/4 -5/4 927 14
=12
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The decrypted rhotrix is obtained, same as the message rhotrix.
Now convert this rhotrix into a stream of numbers and convert it to text using the original

scheme.
927 1 13 27 69145 27 29 9 27

I A M FINE 'l

Eliminate the repetitive stream of plain text. The original plain text is obtained.
I AM FINE'!

The research demonstrates that the cryptosystem developed through rhotrix theory, utilizing a
modified version of the Vigenére cipher, provides an effective framework for information
encryption and decryption. The application of rhotrix theory within cryptographic systems has
been shown to enhance security and reliability, offering a novel method for safeguarding data.
The proposed cryptosystem, which employs rhotrix theory alongside a modified version of the
Vigenere cipher using heart-oriented multiplication, proves to be an effective approach for
enhancing the security of information encryption and decryption. This research area remains
open for future exploration, particularly in investigating the use of row-column multiplication of

rhotrices as an alternative to heart-oriented multiplication.

4.2 ANOVEL APPROACH TO CRYPTOGRAPHY THROUGH THE
APPLICATION OF RHOTRIX THEORY

Encryption
The following method introduces a novel approach to cryptography, utilizing rhotrix theory to
encrypt messages. This method is designed for messages in English and supports specific

¢ 2

punctuation marks, including ¢ °, ©.°, ¢,’, ?°, ‘I’ and ‘:” in the message. Here, the symbol ©_ "’ is
used to represent the space character.
The following table shows the respective numbers representing the above-mentioned alphabets

and symbols.

A 0 Q 16

B 1 R 17
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C 2 S 18
D 3 T 19
E 4 U 20
F 5 \Y% 21
G 6 W 22
H 7 X 23
I 8 Y 24
J 9 V4 25
K 10 _ 26
L 11 . 27
M 12 , 28
N 13 ? 29
o 14 ! 30
P 15 : 31

Now, consider the message “HOW ARE YOU?”. To encrypt this message using the proposed
method, rewrite it as:

HOW_ ARE _YOU?

Let k represents the total number of characters in the message to be encrypted, including the
specified punctuation marks.

Here, k=12.

The number of elements in an odd dimensional rhotrix of order n is (n* + 1)/2.

Hence to represent this message as an odd dimensional rhotrix, consider the inequality
n’+1
2

>k
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Find the smallest odd number n that satisfies the above inequality. This value of n will then be

used as the dimension for constructing the rhotrix. In this case,
n*+1

2 2
On solving we get n = 5 which is the rhotrix’s dimension, 5 ;'1 =13 forn=>5

>12

Now, let

If g = 0, this indicates that there are no empty entries in the rhotrix formed, whereas,
if q # 0, it indicates that there are ¢ q > empty spaces in the rhotrix.
These q spaces should be filled by the numerical equivalents of the letters in the following
sequence:

“XYZXYZXYZXYZ...... ”
where the first empty space is filled by ":', the second by 'X', the third by "Y', and so forth.
Note that the symbol "' is reserved exclusively for this sequence and should not be used in the
message to be encrypted.

In this case, q = 13—12 = 1, indicating that there is 1 empty entry. The message then becomes:

H Q) \W4 A R E Y O U ?

7 14 22 26 0 17 4 26 24 14 20 29 31

To convert these values into a rhotrix R , begin by filling the horizontal axis ( the mth row, which
is the [(n +1)/2]th row). The remaining numbers should then be filled in the following order:

(m -1)th,(m++1)th,(m-2)th,( m+2)th continuing alternately until the 1st and nth rows
of the rhotrix R are filled.

In this case, 29
17 4 26
R=<7 14 22 2 o0
24 14 20

31
Here , heart of the rhotrix h(R ) = 22
For encrypting the data, consider the equation

AN'=(A+h(R))(mod 26)
where A is each element in R . Thus by the above equation, we could form the modified Rhotrix
R " by replacing each A by A" where A’ is each element in R . The following conditions also must

be followed in order to form the new Rhotrix.
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h(R) =hR")

A=A ifA>25. 29
13 0 26

In this case, R=<{3 10 2 26 22
20 10 16

31

Next, rearrange these numbers column-wise into a single line and replace each number with its

corresponding original value from Table 1. This process yields the final encrypted message.

3 13 10 20 29 0 22 10 31 26 26 16 22

p [ N|K|U|? | A]|W]| K] : Q | w

Therefore, in this case,the encrypted message is

DNKU?AWK: QW

Decryption
Let us consider the encrypted message “ DNKU?AWK: QW . Referring to Table 1, we
obtain:

D N K U ? A W K : _ _ Q W

To convert this data into an odd-dimensional rhotrix, the first step is to determine the dimension
n using the same procedure applied in the encryption method.

Now, construct the rhotrix R ' by entering the numbers column wise.

In this case k=13 . So, n = 5 i.e., the rhotrix to be formed is of dimension 5.

Thus we obtain, "

13 0 26
R=¢{3 10 2 2 2
20 10 16

31
Here h(R ") = 22.

Now consider the equation,  A=(\"'—A(R"))(mod 26)

where A" is each elementinR " .

Thus , Rhotrix R is formed by replacing each A by A’ in R " and following the conditions,
1. h((R")=hR)
2. A=)\ if A >25.
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Here in this case

29
17 4 26
R= 7 14 22 26 0
24 14 20
31

To retrieve the data, take the horizontal axis of the rhotrix R as m ,ie, the {(n+1)/2}th row.
Now, enlist the data from the mth row followed by
(m-1)th,(m+1)th,(m-2)th, (m+ 2 )th,....., Ist, nth rows respectively in a single line as

follows :-

7 14 22 26 0 17 4 26 24 14 20 29 31

Now this numerical data is converted to alphabets and symbols from table 1 to obtain the

decrypted message. Here,

7 14 22 26 0 17 4 26 24 14 20 29 31

H (0] \W4 A R E Y 0 U ?

If the decrypted message ends with the sequence *“ :XYZXYZXYZXYZ....” , remove this
sequence and replace the ' ' with a space character to obtain the original message.

Thus, by referring to the table, the original message is successfully recovered as:

HOW ARE YOU?

This method successfully transforms an input message into an encrypted format by employing
rhotrix theory. This process involves identifying the appropriate dimensions for the rhotrix,
filling it with corresponding numerical equivalents, and finally rearranging the data to produce a
secure, encoded message. The resulting encrypted message maintains the original structure while
ensuring confidentiality.

This paper presents a novel approach to cryptography through the application of Rhotrix theory.
The encryption and decryption techniques discussed here represent significant advancements in
ensuring secure data transmission and protection. By incorporating a new method for encrypting
special characters, including the space character, this approach guarantees that messages are
securely formatted.

This methodology provides a scope for future research into the study of rhotrices, inviting further

exploration and development in the field.
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