EXTRACTION OF NATURAL DYE FROM THE LEAVES OF PHYTOLACCA OCTANDRA (L.) AND IT'S APPLICATION ON TEXTILE SUBSTRATES

DISSERTATION SUBMITTED TO THE MAHATMA GANDHI UNIVERSITY,
KOTTAYAM, IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF

MASTER OF SCIENCE IN BOTANY

STEPHY JOHNSON

REGISTER NUMBER: AM23BOT011

DEPARTMENT OF BOTANY AND CENTRE FOR RESEARCH

ST. TERESA'S COLLEGE (AUTONOMOUS), ERNAKULAM

KOCHI-682011

2024-2025

ST.TERESA'S COLLEGE (AUTONOMOUS) **ERNAKULAM**

Certificate of Plagiarism Check for Dissertation

Author Name

STEPHY JOHNSON

Course of Study

M.Sc. Botany

Name of Guide

Dr. Tintu Jose Manicketh

Department

Department Of Botany & Centre for Research

Acceptable Maximum Limit

Submitted By

library@teresas.ac.in

Paper Title

EXTRACTION OF NATURAL DYE FROM THE LEAVES OF PHYTOLACCA OCTANDRA (L.) AND

IT'S APPLICATION ON TEXTILE SUBSTRATES.

Similarity

10%

AI-18%

Paper ID

3568871

Total Pages

40

Submission Date

2025-05-02 14:54:40

Signature of Student

Signature of Guide

Aun Maria Checked By College Librarian

CERTIFICATE

This is to certafy that the dissertation entitled "Extraction of natural dye from the leaves of Phytological extending (L.) and it's application on textile substrates" is an authentic record of work carried out by Ms. Stephy Johnson (Reg. No. AM23BOT011) under my supervision and guidance in the partial fulfillment of the requirement of the M.Sc. Degree of Mahatma Gandhi University, Kottayam. I, further certify that no part of the work embodied in this project has been submitted for the award of any other degree or diploma.

Dr. Tintu Jose Manickett

Supervising teacher

Department of Botany

St. Teresa's College

Ernakulam

Place: Emokulam

Date 02-05-2005

Construction of the particular of the particular

Suc I V Nichisha

Head, Department of Botany

St. Teresa's College

Ernakulam

External Examiners

1. both

2

100 / Jac / 100

DECLARATION

I, hereby declare that work which being presented in the dissertation, entitled "Extraction of natural dye from the leaves of *Phytolacea octandra* (L.) and it's application on textile substrates" in fulfilment of requirements for the award of the degree of Master of Science in Botany and submitted to St. Teresa's College (Autonomous), Ernakulam is an authentic record of my work carried out during M.Sc. period under the supervision of Dr. Tintu Jose Manicketh.

The matter embodied in this dissertation has not been submitted by me for the award of any other degree of this or any other University or Institute.

Place: Emakulam

Date: 02-05-2025

Signature of the candidate

(Stephy Johnson)

ACKNOWLEDGEMENT

I express my reverence to God Almighty, who has given me strength and courage during this work.

I extend my sincere gratitude to **Dr. Tintu Jose Manicketh**, Assistant Professor, Department of Botany, St. Teresa's College, Ernakulam, for her tireless supervision and selfless assistance, and encouragement rendered throughout the course of this project work. Without her help and moral support, this work would not have been a success.

I express my heartfelt thanks to **Smt. I. K Nishitha**, Head, Department of Botany, St. Teresa's College, Ernakulam, for her valuable guidance and support for the completion of this dissertation.

I consider it as a privilege to express my sincere thanks to all the teachers and non-teaching staff, Department of Botany, St. Teresa's College, for their timely suggestions and help.

I acknowledge Prof. Dr. Alphonsa Vijaya Joseph, Principal, St. Teresa's College, Ernakulam, for the opportunity provided to carry my project in the institute.

I am grateful to my beloved parents, cousins, and friends for their encouragement, support, and blessings without which this work would not have been completed successfully.

Stephy Johnson

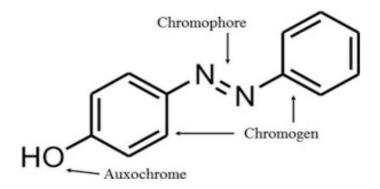
TABLE OF CONTENTS

CHAPTER NO.	TITLE	PAGE NO.
1	Introduction	1-4
2	Review of literature	5-12
3	Materials & Methods	13-15
4	Results	16-19
5	Discussion	20-21
6	Conclusion	22
7	Reference	23-32

CHAPTER-1

INTRODUCTION

Dyes are colored compounds that are widely used in textiles, printing, rubber, cosmetics, plastics, and leather industries to color their products. Among all the dyes used in industries, textile industries are placed in the first position in the use of dyes for the coloration of fiber (Reisch, 1996). Dyeing is an ancient art which predates written records and it was practiced since Bronze Age (Satyanarayana et al., 2013). In textile processing dyeing is an integral part where textile coloration is done to make the fabric lively (Nusrat et al., 2015). Dyes can be classified into natural and synthetic based on their origin.


Synthetic dyes are produced from cheap petroleum sources, vastly used commercially to impart color to textiles because they have simple dyeing process with good fastness properties (Haji et al., 2010). Although synthetic dyes have been used mostly in the process of dyeing textiles due to its excellent color fastness since 1856, they usually contain harmful substances, and bring great harm to the surrounding environment (Cai et al., 2012). Synthetic dyes are suspected to release harmful chemicals that are allergic, carcinogenic, and detrimental to our environment and human body (Neha et al., 2011). The serious environmental problems of public health concern related to colored waste waters containing synthetic dyes have diverted researchers promptly to look for eco-friendly products. So to recover our living condition we need to introduce environment friendly materials to use in textile processing that can accomplish the consumer's requirement as well as economy of country (Nusrat et al., 2015).

Natural dyes are found from natural sources such as plants, animals, insects, or minerals (Samanta et al., 2009). The use of natural organic dyes obtained from renewable resources such as plants and trees has the potential for not only preserving the precious petrochemicals but also the endangered environment for our coming generations (Asif et al., 2010). Natural dyes are mostly used for dyeing textiles from natural fibers to enhance their eco-friendly characteristics. Natural dyes have wide application in the dying of most of the natural fibers, e.g. cotton, linen, wool, and silk fibers, and to some extent for nylon and polyester synthetic fiber (Sonja Jordeva et al., 2020). While the direct dyeing of natural dyestuffs has poor dyeing reproducibility and low color fastness on cotton fabric due to the lack of active groups

in the molecule of cotton (Ding & Freeman, 2017). Natural dyes are mostly used on silk and wool (Dayioglu et al., 2015). However, the major issues for natural dyed textiles are reproducibility of shade, non-availability of a well-defined standard procedure for application, and poor lasting performance of shade under water and light exposure (Sonja Jordeva et al., 2020). For successful commercial use of natural dyes, the appropriate and standardized dyeing techniques need to be adopted without scarifying the required quality of dyed textile materials (Samanta et al., 2009).

In addition to chromophores, most dyes also contain groups known as auxochromes (colour helpers), examples of which are carboxylic acid, sulfonic acid, amino, and hydroxyl groups. While these are not responsible for colour, their presence can shift the colour of a colourant, and they are most often used to influence dye solubility (IARC, 2010). A covalently saturated group which, when attached to a chromophore, changes both the wavelength and the intensity of the absorption maximum is known as auxochrome, e.g., NH2, OH, SH, halogens etc. Auxochromes generally increase the value of λmax as well as εmax by extending the conjugation through resonance. These are also called colour enhancing groups. An auxochrome itself does not show absorption above 200 nm (Gürses et al., 2016). A chromophore is usually an electron-withdrawing group, while an auxochrome is commonly an electron-donating group and the two are linked through a conjugated system (Burkinshaw 2016).

The organic dye molecules contained three main components such as chromogen, chromophore and auxochrome. The chromogen is a chemical compound that is either colored or could be made colored by the attachment of suitable substituent (Gürses et al., 2016). The chromophore and the auxochrome(s) are also part of the chromogen (Carmen and Daniela 2012). The chromophore is a chemical group that is responsible for the appearance of color in compounds (the chromogen) where it is located. The colorants are sometimes also classified according to their main chromophore (e.g., azo dyes contain the chromophore -N=N-) (Iqbal 2008). The auxochrome is a substituent group found in a chromogen that influences its color. The chromophore or chromophoric group is responsible for chromogen which will be colored. The chromophore itself is not capable of determine a particular color and hue (Marsden 1982).

Fig. 1: The components of 4-Hydroxyazobenzene (Gürses et al., 2016)

Weeds are unwanted plants that deplete the environment, so using weeds as a source of natural dye has benefits in both the textile industry and maintaining the harmony of the environment. *Phytolacca octandra* (L.) is a fast-growing weed commonly known as inkweed, found in forests and near rivers, though it also thrives in drier regions with hot climates. It belongs to the family Phytolaccaceae. Its parts can be used to obtain the natural dyes (Zhao et al., 2014).

1.1 BACKGROUND AND SIGNIFICANCE OF THE PRESENT STUDY

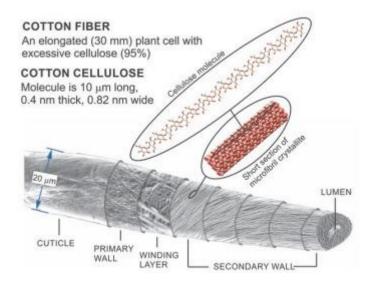
Phytolacca octandra (L.) is a common weed that is available in the locality of Tripunithura. In recent years, the use of plant-based products has been increasing. The identification and preparation of useful products from a futile substance and its application in various fields can thrive the economy. So, it is necessary to investigate the hidden potential of the plant Phytolacca octandra (L.). Research on Phytolacca octandra remains incomplete, particularly in the field of phytochemistry, taxonomy, and anatomy. Further exploration of these aspects could lead to discoveries in medicine, pharmaceuticals, agriculture, etc.

- The study would help to discover the hidden ability of the weed, *Phytolacca octandra* (L.).
- ➤ The study helps to find out the different applications of *Phytolacca octandra* (L.) in various fields.

1.3 OBJECTIVES

The objectives of the present study are:

- > To extract the natural dye from the leaves of *Phytolacca octandra* (L.).
- > To study the various eco-friendly methods of natural dye extraction.
- > To assess the potential of the extracted dye and its application on various textile substrates.


CHAPTER-2

REVIEW OF LITERATURE

2.1 Review about the textile substrates used

2.1.1 Cotton

Cotton lint is long (>25 mm) fiber that can be spun into yarn. This product is used in clothing, denim, towels, and dollar bills. The lint fibers can be easily separated from seeds through the ginning process. Cotton has the distinction of being, with only mechanical cleaning, quite pure cellulose, as much as 95%. Cellulose, the sugar of little cells, is a polymer of as many as 20,000 glucose residues linked β -1 \rightarrow 4 (Fang et al., 2018).

Fig. 2: Montage of electron micrographs, not to scale, selected and placed to resemble the different layers that compose the cotton fiber that is modified from the original figure described in Goynes (2005).

Cotton is a single-celled fiber made of several layers:

Cuticle: Outermost layer composed of waxes and pectins that protect the fiber. Primary Wall: A thin, elastic outer skin containing randomly oriented microfibrils and some cellulose. Secondary Wall: Comprises most of the fiber's mass; contains highly oriented cellulose fibrils in concentric layers or lamellae. Lumen: Central hollow canal containing remnants of cytoplasm. Each secondary wall lamella consists of fibrils—tiny cellulose threads arranged

helically. These fibrils are made up of crystallites, which are bundles of cellulose chains, and amorphous regions that allow for flexibility and moisture absorption (Nickerson et al 1940).

Cotton fibers, when freshly picked and not dried, are generally round in cross-section, but as they dry, they flatten and develop convolutions—twists believed to be caused by changes in microfibril orientation. These convolutions, which occur about ten times per millimeter, may create weak points along the fiber, reducing its strength compared to crystalline cellulose. The structure of cotton fiber is highly hierarchical, with cellulose molecules about 10 µm long, forming crystallites composed of roughly 175 glucose units, and a cross-section possibly containing millions of such crystallites. The fiber's secondary wall, composed primarily of cellulose, is believed to develop in layers influenced by daily temperature changes (Fang et al., 2018).

Properties of cotton are:

Tensile Strength: Cotton fibers exhibit good tensile strength, typically around 30,000–60,000 psi, depending on fiber fineness and maturity. Fine fibers tend to be stronger due to better molecular alignment and outer wall elasticity. Elasticity and plasticity: Cotton fibers show moderate elasticity with about 8% elongation at break. They demonstrate elastic aftereffects, particularly under humid conditions, due to their fibrillar network and partial plasticity. Moisture absorption: Cotton is highly hygroscopic, absorbing up to 25% of its weight in water. Moisture improves fiber flexibility and strength, making it useful for textiles that require breathability and comfort. Swelling behavior: Cotton fibers swell laterally in water and certain chemicals (e.g., NaOH), leading to structural changes that improve dyeability (e.g., mercerization). Swelling is limited by the cuticle and crystalline regions unless chemically treated. Thermal and Chemical Resistance: Cotton is relatively stable under heat but degrades under prolonged exposure to acids or UV light, primarily affecting the less dense amorphous regions of the fiber (Nickerson et al 1940).

Chemical composition of cotton:

Cellulose: 88-95%, Waxes and fatty acids: 0.5-1.0%, Proteins: 1-2%, Pectic substances: 0.5-1.5%, Mineral ash: 0.5-1.0%, Water: 6-8% (Nickerson et al 1940).

2.1.2 Rayon

Rayon is a regenerated cellulose fiber derived from natural sources like wood pulp or cotton linters. Its structure includes:

Long Cellulose Chains: Rayon consists of β -D-glucose units linked via $\beta(1\rightarrow 4)$ glycosidic bonds, similar to natural cellulose. Crystalline and Amorphous Regions: The fiber has alternating regions of high order (crystalline "micelles") and less ordered, amorphous areas. These regions affect the fiber's strength, dye uptake, and flexibility. Orientation from Processing: The crystallinity and orientation are significantly influenced by the coagulation and regeneration processes. Stretching during spinning increases alignment but has limited effect on crystallinity itself (Lovell et al., 1946). Rayon is produced via processes like the viscose method, which involves alkali treatment, xanthation, and extrusion into an acid coagulation bath. Structural parameters like crystallinity, fibril orientation, and chain alignment are strongly affected by stretching, coagulation, and drying conditions (Ingersoll et al., 1946).

Properties of rayon:

Tensile strength and elongation: Rayon's strength varies based on processing; high-tenacity tire-cord rayon has significantly higher strength than unstretched rayon. Elongation also varies—normal rayon can elongate up to 35%, while highly stretched rayon exhibits less elongation due to greater molecular alignment. Elasticity and Fibrillation: Rayon is less elastic than natural fibers and can fibrillate (split into fibrils) when mechanically stressed after acid hydrolysis. This behavior is particularly observed in highly oriented crystalline regions. Moisture absorption and affinity: Rayon has high moisture regain (11–13%), making it comfortable for clothing applications, though it weakens when wet. It swells in water due to its amorphous structure, enhancing dyeability (Lovell et al., 1946). Dye affinity and drape: Due to its amorphous regions, rayon accepts dyes well, producing vivid colors. It also drapes well, making it desirable in fashion and upholstery textiles. Orientation and lateral order: The fiber's physical performance is closely linked to the orientation of cellulose chains along the fiber axis and the degree of lateral order (crystalline alignment across chains). Higher orientation improves strength, while reduced lateral order allows for better extensibility (Ingersoll et al., 1946).

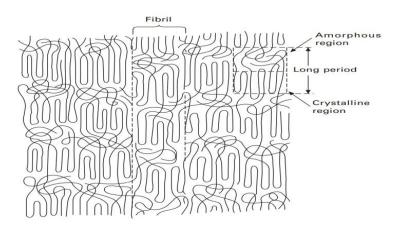
Fig. 3: Molecular structure of rayon (Bortner et al., 2003)

Primary Component: Cellulose: 99%, same as in natural fibers.

Residual Chemicals (depending on process): Traces of sulfur (from carbon disulfide used in viscose process), Sodium or zinc salts

Water Regain: 11–13% under standard conditions (Ingersoll et al., 1946).

2.1.3 Polyester


Polyester, particularly poly(ethylene terephthalate) (PET), has a repeating unit composed of terephthalic acid and ethylene glycol linked by ester bonds. The molecular structure includes:

Crystalline Regions: Chains arranged in an ordered, triclinic lattice (unit cell dimensions: a = 0.456 nm, b = 0.594 nm, c = 1.075 nm) with extended chains and aligned aromatic rings. Amorphous Regions: Disordered chains allowing for flexibility and dye penetration. Orientation: Achieved during fiber drawing, affecting strength, elasticity, and dimensional stability. The performance is determined by the degree of crystallinity, molecular orientation, and chain alignment developed during melt spinning and heat setting (Hansen et al., 2005).

Properties of Polyester

Tensile strength and elasticity: PET fibers exhibit high strength and moderate to high elasticity. High-tenacity PET fibers show a break tenacity of 0.6–0.9 N/tex with elongation at break around 10–25%, while regular PET shows higher elongation but lower tenacity (Hansen et al., 2005). Thermal stability: PET fibers melt at 255–265°C and have a glass

transition temperature (Tg) of about 78°C. After drawing, Tg increases to around 120°C, enhancing thermal resistance. Resilience and elastic recovery: Especially in PTT (polytrimethylene terephthalate), polyester fibers exhibit excellent elastic recovery, recovering fully from elongations over 100%. This makes them suitable for carpets, sportswear, and stretch fabrics. Low moisture absorption: Polyester is hydrophobic, with a moisture regain of ~0.4%, making it quick-drying but less breathable than natural fibers. (East et al., 2009).

Fig. 4: Morphology of PET fiber showing various features (East et al., 2009)

Chemical composition:

Empirical Formula: (C₁₀H₈O₄)n

Elements: Carbon (C): ~62%, Hydrogen (H): ~4%, Oxygen (O): ~34%

Main Monomers: Terephthalic Acid (TA), Ethylene Glycol (EG) (East et al., 2009).

2.2 Overview of the application of natural dye on textile substrates

Jahan and Datta (2015) conducted a comparative analysis of dyeing cotton and silk fabrics with madder as a natural dye, focussed on the role of different mordanting techniques in colour characteristics and fastness properties. Results indicated that silk produced deeper shades and exhibited superior fastness compared to cotton, especially when alum was used as a mordant. Ali et al. (2015) conducted a phylogenetic analysis of the Phytolacca genus (Phytolaccaeee) to address the taxonomic complexity of *Phytolacca*, which has long been debated due to morphological variations and hybridization. Cerempei et al., (2016) studied a

novel application of using vegetable waste, such as fall quince leaves for wool fibers dyeing. Natural dye obtained by aqueous extraction of quince leaves (*Cydonia oblonga*) was applied to wool fibers by an exhaustion dyeing process.

Dyeing of cotton fabric with natural colorants extracted from tea leaves had been investigated by Bydoon et al., (2016). The dyeing process was carried out using different techniques with different solvents and applied on Giza 86 Egyptian cotton fabric using some mordants and gelatin modification. Kim et al. (2017) studied natural dyeing with *Terminalia chebula* Retzius (*T. chebula*), highlighting the advantages of natural dyes, such as their non-toxic and non-allergenic properties, while also indicating their limitations, including low dye affinity and poor colour fastness. Vadwala et al., (2017) extracted natural dye from the waste leaves of *Terminalia Catappa* (tropical almond), and its application on silk fabrics pre-treated with eco-friendly and non-eco-friendly mordants has been carried out successfully. Different shades with excellent to good fastness properties have been obtained.

Mansour et al., (2017) used grape pomace, as a source of natural dyes that could be utilized in textile dyeing. Fröse et al. (2018) reviewed the application of natural dyes on various textile materials, discussing their environmental benefits and challenges compared to synthetic dyes. This indicates the historical significance of natural dyes and the increasing interest in their use due to concerns about water pollution and chemical waste from synthetic dyeing processes. Samanta et al. (2018) review the fundamentals of natural dyeing, discussing its historical significance, eco-friendliness, and growing demand due to environmental concerns.

Mozaffari (2018) conducted a comprehensive review of the role of alum as a natural mordant in textile dyeing, emphasizing its industrial significance. The research highlighted the challenges of dyeing cotton with natural dyes and the necessity of alum as a chemical agent to facilitate bonding between dyes and fabrics. Singh and Singh (2018) reviewed the application of natural mordants in textile dyeing, emphasizing their role in improving dye fixation and fastness properties. Abdel-Zaher et al.,(2018) evaluated the effect of silk fabrics dyeing with a natural dye extracted from Azadirachta indica (neem) leaves under different conditions, such as; different dye bath pH values, different dyeing temperatures, and different dyeing times.

Evitasari et al. (2019) conducted a study on the dyeing of cotton fabric using natural dye extracted from the leaves of *Peristrophe bivalvis* (Noja leaf). Mordants like alum, ferrous sulphate, and calcium oxide form chemical bonds with dyes and fabrics, influencing the final

shade and durability of the colour. Kumbhar et al., (2019) extracted a new brown-coloured natural dye from the leaves of *Ficus amplissima* using alum, copper sulphate, iron sulphate, and stannous chloride as mordants, using the pre-mordanting method. The dye was fixed on the mordanted cotton by the conventional dyeing methods and optimized dyeing conditions. Amutha et al. (2020) studied natural dyes, focusing on their eco-friendly nature and sustainable application in textile dyeing. They highlighted that while natural dyes have been traditionally used on natural fibers like cotton, silk, and wool, recent studies have explored their application on synthetic fibers such as polyester and nylon.

Gong et al., (2020) investigated the possibility of wool dyeing with natural dye extracted from the *Cinnamomum camphora* middle-aged/mature leaves with the help of natural mordants and chemical mordants. Agarwal et al., (2020) extracted the dye colourant from teak leaves and characterized the dye in terms of yield % to standardize the conditions of application of dye extracted from teak leaves on selected natural and synthetic fabrics using selected natural and chemical mordants. Talib et al., (2020) isolated colourant from black pepper (*Piper nigrum* L.), and bio-mordants have been included to obtain colourfast shades.

Rehman et al., (2021) used *Acalypha wilkesiana* (copper plant) as the source of a natural colorant for auxiliary-free dyeing of cotton, a way forward to eco-friendly dyeing. Without using any metallic salts as mordants, the color fastness properties, like rubbing fastness, washing fastness, were also slightly improved due to greater dye fixation. Fang et al., (2022) studied the usability of *Ipomoea batatas* leaves for simultaneous dyeing and functional finishing (anti-bacterial and anti-ultraviolet) of textile fabrics without the use of inorganic salts and metal mordants for the cleaner production of environmentally friendly value-added products.

Khatun et al.,(2022) studied approaches to extract natural dye from the waste leaves of *Polyalthia longifolia* and evaluate the dyeing properties on silk and cotton fabrics. The color was fixed firmly on silk fabrics without any mordant. Ferrous sulfate and copper sulfate mordanted cotton fabrics showed good light and wash fastness properties. Hayat et al.,(2022) studied the utilization of waste black tea leaf (BT)—based tannin brown natural colorant for silk dyeing.

Ain et al., (2024) explore the efficacy of banana leaf-extracted natural dyes with mordants in dyeing Pima cotton, examining color properties, chemical attributes, and fastness while exploring the potential for industrial applications. Nadeem et al., (2024) evaluated the

extraction of natural dyes from *Conocarpus erectus* L. leaves and their application on wool and silk fabrics. Okwudo et al., (2025) investigated the dyeing efficiency of dye extracted from teak (*Tectona grandis*) leaves by dyeing it on alum mordanted cotton fabric and tested the fastness of the dyed cotton fabric to repeated washing and different detergents.

CHAPTER-3

MATERIALS AND METHODS

3.1 PLANT MATERIAL

SYSTEMATIC POSITION

Kingdom: Plantae

Phylum : Streptophyta

Class : Equisetopsida

Subclass : Magnolidae

Order : Caryophyllales

Family : Phytolaccaceae

Genus : Phytolacca

Species : octandra

Part used : Leaves

Fig. 5: Leaves of *Phytolacca octandra* (L.)

BOTANICAL DESCRIPTION

The family Phytolaccaceae, in the order of Caryophyllales, consists of 17 genera and 125 species, mainly distributed in South Africa and tropical and subtropical America (Vithya et al., 2018). Inkweed, red-ink plant, and dyeberry are the common names of *Phytolacca octandra*(L.). Herbs, shrubs, more or less woody climbers, or trees, alternate leaves, and small bisexual flowers are the members of this family (Rohwer et al., 1993).

Phytolacca octandra (L.) is a weed whose green leaves are used to extract natural dye by the aqueous method. The leaves were collected and cleaned. 5g, 10g, and 15g of leaves were weighed. The cotton, rayon, and polyester were the textile substrates used for the dyeing process. The steps involved were scouring, tannin bath, mordanting, and dyeing.

3.2 METHODS

3.2.1 Collection of plant material and extraction of natural dye

The fresh leaves were collected, (Fig. 2) from the site (Kochi, Kerala, India, specifically at Th419, Eroor, Kochi (Latitude: 9.980375° N, Longitude: 76.334731° E). Cleaned and weighed.

Aqueous method of extraction was carried out to extract the dye from the selected plant. 5 g, 10 g, and 15 g of leaves were used for the dye extraction. The leaves were crushed and grounded with mortar and pestle and distilled water was added to this to make upto 20 ml. The extracted dyes were filtered with Whatman No. 1 filter paper.

3.2.2 Determination of pH

The pH of the extracted natural dye was determined using a digital pH meter.

3.2.3 Selection of textile materials

100% cotton, rayon and polyester yarns were purchased from Thannikkal Textiles, Ernakulam. The choice of textile substrates used in the present study was based on the availability of the fibres and its properties (Mather et al., 2023).

Fig. 6: Fresh leaves of *Phytolacca octandra* (L.)

Fig. 7: Dye extracted from the leaves by aqueous method

3.2.4 Pre-treatment of the textile substrates

3.2.4.1 Scouring

Scouring is the process of washing with mild soap to get rid of contaminants. To maintain the Material to Liquor Ratio of 1:20, cotton, rayon and polyester yarns were boiled for 30 minutes at 40–45°C in a solution that contained 0.5 g/L sodium carbonate and 2 g/L of non-ionic detergent (labolene). After properly cleaning, the scouring material with tap water, it was allowed to air dry at room temperature.

3.2.4.2 Tanning

The cotton fabric was undergone a tannin bath. Tannic acid was used for this. Cotton yarns was treated with 20% tannic acid. Cotton yarns were boiled in 100 ml of distilled water, and to this tannic acid were added and stirred well for 45 minutes and cooled it at room temperature.

3.2.4.3 Mordanting

Without the application of a mordant, natural dyes typically have no affinity for textile fibres. Mordants act as a chemical bridge that binds the dye molecules to a textile fibre through a metal salt, preventing colour fading from exposure to light, rubbing, washing, and other factors (Repon et al., 2017).

Both natural and synthetic mordants were used for a comparison. Tamarind and *Terminalia chebula* were used as the natural mordants, and alum and copper sulphate were used as the synthetic mordants. 0.5%, 1%, and 1.5% concentrations of each mordant were used for mordanting.

3.2.4.4 Dyeing

The pre-mordanted cotton, rayon, and polyester substrates were dyed with *Phytolacca* octandra dye under different concentrations ranging from 5 g, 10 g, and 15 g at room temperature for 24 hours at its natural pH. (T.N Ansari et al., 2022).

Each yarn was dyed, rinsed with water, and allowed to air dry at room temperature after bein g cleaned with a non-ionic detergent.

CHAPTER-4

RESULTS

4.1 Extraction of natural dye

A brown shade was obtained from the leaves of *Phytolacca octandra* (L.). The brown color dyes was obtained due to natural pigments such as tannins, flavonoids, phenols (Schrand et al., 2020), (Vithya Eswari et al., 2018).

The substrates dyed with this result in different shades of brown. The various shades produced depend on several factors, such as the concentration of dye, the method of extraction, the effect of mordants, and the type of textile substrates.

4.2 Determination of pH

The pH of the extracted natural dye was 5, which was acidic. pH plays a critical role in dyeing processes, particularly in determining shade, uniformity, and dye uptake efficiency. The interaction of pH with dye concentration and temperature significantly affects the final color of the textile. Direct dyes typically require a slightly acidic pH (around 5.5) to achieve optimal dye uptake and color development (Huang et al., 1999).

4.3 Dyeing

Different shades of brown colour was obtained with different mordant concentration and different dyeing concentration (fig. 8, 9, 10). Based on the visual assessment, 5g dye concentration showed higher efficiency, and variations depend on the mordants and substrates used.

Fig.8: Dyeing of cotton, rayon, and polyester fabric in dye concentration of 5 g of leaf extract by using various concentrations of mordants

Fig. 9: Dyeing of cotton, rayon, and polyester fabric in dye concentration of 10 g by using various concentrations of mordants

Fig. 10: Dyeing of cotton, rayon, and polyester fabric in dye concentration of 15 g by using various concentrations of mordants

Mordants	Cotton	Rayon	Polyester
Tamarind	Light brown colour	Beige colour	Light beige colour
Terminalia chebula	Brown colour	Golden brown colour	Cream colour
Copper sulphate	Dark brown colour	Dark brown colour	Cream colour
Alum	Yellowish brown colour	Greenish brown colour	Greenish yellow colour

Table 1: Colours produced with different mordants on different textile substrates

4.4 Effect of mordant

Natural and synthetic mordants were used to enhance the colour of the textile substrates. Among them, copper sulphate act as the best mordants by enhancing the colour of the textile substrates into darker shades of brown. Cu (II) ions forms a complex with the natural colouring compounds, resulting in their fixation on the fibre. The higher the concentration of

mordant on the fibre, the greater will be the extent of complex formation, which in turn increases colour depth on the fibre (TexNote 2014).

Cotton and rayon show a higher dye absorption property than polyester. Cotton and rayon absorb dyes more effectively than polyester due to their fiber structure. Cotton, being a natural fiber, has hydroxyl groups in its cellulose molecules that form strong bonds with dye

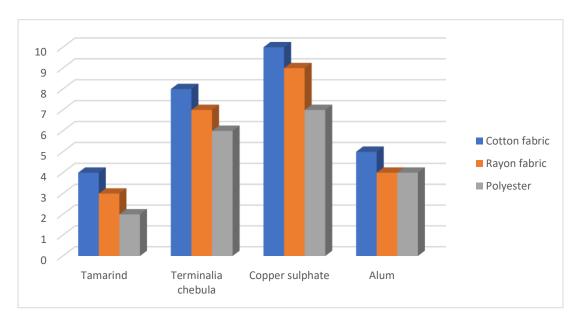


Fig 11: Effect of different mordants on various substrates

molecules. Rayon, a semi-synthetic fiber, also has a similar structure that allows it to bond easily with dyes. In contrast, polyester is a synthetic fiber made from petroleum-based products, which have a non-porous surface and are less receptive to dye absorption. The hydrophobic nature of polyester limits its ability to bond with dyes effectively (Threads Monthly, 2023).

CHAPTER-5

DISCUSSION

The extraction and application of natural brown dye from *Phytolacca octandra* align closely with the findings from *Ficus amplissima*. Both plant sources are capable of producing brown-colored dyes due to their content of bioactive compounds such as tannins, flavonoids, and polyphenols. Similar results was also obtained from the leaves of *Ficus amplissima* (Kumbhar et al., 2019), outer shells of the (wall nut) Juglans regia (Tutak et al., 2011) and from the leaves of (Henna) *Lawsonia inermis* L. (Qadariyah et al., 2019). Overall, these studies support the relevance of exploring underutilized plants for eco-friendly dyeing. They demonstrate that with proper extraction and mordanting techniques, leaf-based dyes can serve as effective, sustainable alternatives to synthetic dyes in textile processing (Kumbhar et al., 2019).

The present study on the extraction of natural dye from Phytolacca octandra leaves and its application to textile substrates aligns with trends in sustainable material use. The natural dye from *Phytolacca octandra* and tannins are plant-derived phenolic compounds that serve as eco-friendly substitutes for synthetic chemicals, contributing to the reduction of environmental pollution and promoting the use of renewable resources. The extracted brown dye from *Phytolacca octandra* showed good affinity for cotton, rayon, and polyester fabrics at an acidic pH of 5. This is comparable to the behavior of tannins, whose extraction efficiency and performance also vary significantly with pH, temperature, and solvent type, they directly influence yield, stability, dye extraction. Tannins are modified or combined with other substances to enhance adhesion to wood or collagen; likewise, the dyeing performance of Phytolacca octandra extract may be enhanced by using mordants or pretreatments to improve fixation, fastness, and uniformity across fabric types. The multifunctional potential of tannins such as antimicrobial, antioxidant, and UV-protective properties is relevant when considering the full scope of applications for natural dyes.. Furthermore, while tannins are heavily researched for their roles in adhesives, coatings, and preservatives, the use of Phytolacca octandra dye in textiles adds to the expanding scope of plant extracts in functional and aesthetic applications. Both approaches demonstrate the growing interest in

replacing petroleum-based and hazardous chemicals with biodegradable, non-toxic, and renewable alternatives (Shirmohammadli et al., 2018).

Research on the extraction of natural dye from the leaves of *Phytolacca octandra* introduces a relatively unexplored and potentially more sustainable source of brown dye. Utilizing leaves as the dye-bearing part offers ecological advantages by allowing for regenerative harvesting without harming the plant's survival. While traditional brown dyes like catechu are mainly tannin-based, *Phytolacca octandra* contain polyphenolic compounds such as flavonoids or tannins, which also have the potential to bind effectively with mordants and produce stable brown shades. The *Phytolacca octandra* performs well on cotton, rayon, and polyester, with mordants, it serve as a practical alternative to more traditional sources (Saxena et al.,2014).

CHAPTER - 6

CONCLUSION

The current study has successfully attempted to extract the natural dye from the leaves of *Phytolacca octandra*. The dye extraction process, optimized through variations in temperature, time, and mordant types, yielded a range of shades from light to reddish-brown. Among the tested yarns, cotton and rayon demonstrated superior dye uptake and retention compared to polyester, indicating their compatibility with natural dyeing. The use of both natural and synthetic mordants significantly influenced the final color and fastness properties, showcasing the importance of mordant selection in natural dye applications.

The study highlighted the eco-friendly nature of *P. octandra* dye, promoting its use as an alternative to harmful synthetic dyes. The research supports broader adoption of sustainable practices in the textile industry, particularly in fashion and artisanal crafts, while also aligning with global efforts to reduce environmental pollution. The study paves the way for integrating traditional dyeing methods with modern sustainable technologies, encouraging environmentally responsible textile production and supporting small-scale industries and local artisans.

In conclusion, this project not only contributes to the scientific understanding of natural dyeing but also emphasizes the economic and ecological potential of *P. octandra* by adopting eco-friendly method of extraction. *Phytolacca octandra* is a fast-growing, invasive weed. This is one of the first successful attempt on dyeing the yarns from *P. octandra* leaves. Further research focused on enhancing dye stability, exploring its bioactive properties, and scaling up production could unlock new commercial opportunities. As a renewable, biodegradable, and non-toxic dye source, *P. octandra* stands as a promising solution for the future of sustainable textiles and green innovation.

REFERENCES

- Abdel-Zaher, N. A., Moselhey, M. T., & Guirguis, O. W. (2018). Study the effect of different dyeing conditions of extracted natural dye from leaves of neem on silk fabrics. Journal of Chemical Metrology, 12(1).
- Abrahart EN(1977). Dyes and their Intermediates. New York: Chemical Publishing, pp. 1–12
- Affat, S. S. (2021). Classifications, advantages, disadvantages, toxicity effects of natural and synthetic dyes: a review. University of Thi-Qar Journal of Science, 8(1), 130-135.
- Agrawal, A., & Chopra, S. (2020). Sustainable dyeing of selected natural and synthetic fabrics using waste teak leaves (Tectona Grandis L.). Research Journal of Textile and Apparel, 24(4), 357-374.
- Ain, Q. U., Nazli, Z. I. H., Aslam, M., Zafar, I., Afridi, H. I., Unar, A., ... & Alsahli, A. A. (2024). Multifunctional analysis of banana leaves extracts for dyeing properties of pima cotton fabric using different mordants. Natural Product Communications, 19(2), 1934578X241231463.
- Al Mamun, M. A., Hossain, M. M., & Khan, M. A. (2020). Dyeing of polyester fabric with natural colorants extracted from mahogany (Swieteniamahagoni) seed pods. Journal of Engineering Science, 11(1), 37-42.
- Alam, M. M., Rahman, M. L., & Haque, M. Z. (2007). Extraction of henna leaf dye and its dyeing effects on textile fibre. Bangladesh Journal of Scientific and Industrial Research, 42(2), 217-222.
- Ali, M. A., Lee, J., Kim, S. Y., Park, S. H., & Al-Hemaid, F. M. (2015). Molecular phylogenetic analyses of internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA indicate monophyly of the genus Phytolacca L.(Phytolaccaceae). Bangladesh Journal of Plant Taxonomy, 22(1), 1-8.
- Amutha, K. S. G. A., & Sudhapriya, N. (2020). Dyeing of textiles with natural dyes extracted from Terminalia arjuna and Thespesia populnea fruits. Industrial Crops and Products, 148, 112303.

- Ansari, T. N., & Patel, A. (2022). Eco-friendly dyeing on rayon fabric with biomordants. International Journal of Creative Research Thoughts (IJCRT), 10(6), a246-a249
- Arnold Krochmal, P.W. Lequesne. (1970) "Phytolacca americana, a possible source of the Molluscicide". U.S.D.A Forest service research paper NE-177
- Benli, H. (2024). Bio-mordants: a review. Environmental Science and Pollution Research, 31(14), 20714-20771.
- Bortner, Michael. (2003). Melt Processing of Metastable Acrylic Copolymer Carbon Precursors.
- Bristi, U., Pias, A. K., & Lavlu, F. H. (2019). A Sustainable process by bio-scouring for cotton knitted fabric suitable for next generation. J. Text. Eng. Fash. Technol, 5, 41-48.
- Burkinshaw SM (2016) Physico-chemical aspects of textile coloration. Wiley, Hoboken, New Jersey
- Burkinshaw, S. M., & Kumar, N. (2009). The mordant dyeing of wool using tannic acid and FeSO4, Part 1: Initial findings. Dyes and Pigments, 80(1), 53-60.
- Bydoon, E. A. (2016). Extraction of natural dye from tea leaves and its application on Giza 86 Egyptian cotton fabric. Int. J. Adv. Sci. Eng, 3(4), 455-462.
- Carmen Z, Daniela S (2012) Textile organic dyes—characteristics, polluting effects and separation/elimination procedures from industrial effluents—a critical overview. In: Puzyn T (ed) Organic pollutants ten years after the stockholm convention—environmental and analytical update. InTech Press, Crotia, pp 55–86
- Cerempei, A., Mureşan, E. I., Cimpoeşu, N., Carp-Cărare, C., & Rimbu, C. (2016).
 Dyeing and antibacterial properties of aqueous extracts from quince (Cydonia oblonga) leaves. Industrial Crops and Products, 94, 216-225.
- Chowdhury, T. A., Khandaker, J. I., Gafur, M. A., Repon, M. R., Islam, M. K., Hossain, A., & Mollick, S. (2025). Biomordant assisted natural dyeing of cellulosic fibre: a greener approach. Materials Research Innovations, 29(1), 27-34.
- Chungkrang, L., Bhuyan, S., & Phukan, A. R. (2020). Natural dye sources and its applications in textiles: a brief review. International Journal of Current Microbiology and Applied Sciences, 9(10), 261-269.

- Chungkrang, Lizamoni & Bhuyan, Smita & Phukan, Ava. (2021). Natural Dyes: Extraction and Applications. International Journal of Current Microbiology and Applied Sciences. 10. 1669-1677. 10.20546/ijcmas.2021.1001.195.
- Collett, M. G., Thompson, K. G., & Christie, R. J. (2011). Photosensitisation, crystal-associated cholangiohepatopathy, and acute renal tubular necrosis in calves following ingestion of Phytolacca octandra (inkweed). New Zealand Veterinary Journal, 59(3), 147-152.
- Ding, Y. I., & Freeman, H. S. (2017). Mordant dye application on cotton: optimisation and combination with natural dyes. Coloration Technology, 133(5), 369-375.
- Dutta, P., Mahjebin, S., Sufian, M. A., Rabbi, M. R., Chowdhury, S., & Imran, I. H. (2021). Impacts of natural and synthetic mordants on cotton knit fabric dyed with natural dye from onion skin in perspective of eco-friendly textile process. Materials Today: Proceedings, 47, 2633-2640.
- East, A. J. (2009). The structure of polyester fibers. In B. P. Saville (Ed.), Handbook of Textile Fibre Structure (Vol. 2, pp. 181–208). Woodhead Publishing.
- Elsahida, K., Fauzi, A. M., Sailah, I., & Siregar, I. Z. (2019, December).
 Sustainability of the use of natural dyes in the textile industry. In IOP Conference
 Series: Earth and Environmental Science (Vol. 399, No. 1, p. 012065). IOP Publishing.
- Evitasari, R. T., Rahayuningsih, E., & Mindaryani, A. (2019, March). Dyeing of cotton fabric with natural dye from peristrophe bivalvis extract. In AIP Conference Proceedings (Vol. 2085, No. 1). AIP Publishing.
- Fang, D. D. (Ed.). (2018). Cotton fiber: physics, chemistry and biology (pp. 151-178). Cham: Springer International Publishing.
- Fang, J., Meng, C., & Zhang, G. (2022). Agricultural waste of Ipomoea batatas leaves as a source of natural dye for green coloration and bio-functional finishing for textile fabrics. Industrial Crops and Products, 177, 114440.
- Fröse, A., Schmidtke, K., Sukmann, T., Junger, I. J., & Ehrmann, A. (2019). Application of natural dyes on diverse textile materials. Optik, 181, 215-219.
- Geetha, B., & Sumathy, V. J. H. (2013). Extraction of natural dyes from plants. International Journal of Chemistry and Pharmaceutical Sciences, 1(8), 502-509.
- Gong, K., Rather, L. J., Zhou, Q., Wang, W., & Li, Q. (2020). Natural dyeing of merino wool fibers with Cinnamomum camphora leaves extract with mordants of

- biological origin: a greener approach of textile coloration. The Journal of the Textile Institute, 111(7), 1038-1046.
- Gorjanc, M., Savić, A., Topalić-Trivunović, L., Mozetič, M., Zaplotnik, R., Vesel, A.,
 & Grujić, D. (2016). Dyeing of plasma treated cotton and bamboo rayon with Fallopia japonica extract. Cellulose, 23, 2221-2228.
- Goynes WR Jr. (2005) In search of the mystic cotton fiber maturity: a view from the microscope. Proceeding of Beltwide Cotton Conference, New Orleans, Louisiana, pp 2212–2218.
- Granger, R. (2010). Natural dyes and home dyeing: A guide to creating natural fabrics with traditional methods. Dover Publications.
- Guha, A. K. (2019). A review on sources and application of natural dyes in textiles. International Journal of Textile Science, 8(2), 38-40.
- Gürses, A., Açıkyıldız, M., Güneş, K., Gürses, M. S., Gürses, A., Açıkyıldız, M., ... & Gürses, M. S. (2016). Dyes and pigments: their structure and properties. Dyes and pigments, 13-29.
- Hansen, S. M., & Sargeant, P. B. (2005). Fibers, polyester. In Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons.
- Hayat, T., Adeel, S., Batool, F., Amin, N., Ahmad, T., & Ozomay, M. (2022). Waste black tea leaves (Camelia sinensis) as a sustainable source of tannin natural colorant for bio-treated silk dyeing. Environmental Science and Pollution Research, 29(16), 24035-24048.
- Hossain, M. A., Samanta, A., Abser, M. N., & Dilruba, F. A. (2019). A review on technological and natural dyeing concepts for natural dyeing along with natural finishing on natural fibre. International Journal of Textile Science and Engineering, 3(1), 1-3.
- Huang, C.-C., & Yu, W.-H. (1999). Control of dye concentration, pH, and temperature in dyeing processes. Textile Research Journal, 69(12), 914–918.
- Hummel, M., & Hermann, G. (2017). Textile dyeing and coloration: Principles and applications. Wiley-VCH
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2010). Some aromatic amines, organic dyes, and related exposures: General introduction to the chemistry of dyes (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 99). International Agency for Research on Cancer.

- Ingersoll, H. G. (1946). Fine structure of viscose rayon. Journal of Applied Physics, 17(11), 924–939.
- Iqbal M (2008) Textile dyes. Rahber Publishers, Pakistan
- Iteku, J. B., Mbayi, O., Bongo, G. N., Mutwale, P. K., Wambale, J. M., Lengbiye, E., ... & Ngbolua, K. (2019). Phytochemical analysis and assessment of antibacterial and antioxidant activities of Phytolacca dodecandra L. Herit Leaf extracts (Phytolaccaceae). Int J Biomed Eng Clin Sci, 5(3), 31.
- Iteku, J. B., Mbayi, O., Bongo, G. N., Mutwale, P. K., Wambale, J. M., Lengbiye, E.,
 ... & Ngbolua, K. N. (2019). Phytochemical analysis and assessment of antibacterial
 and antioxidant activities of Phytolacca dodecandra L. Herit Leaf extracts
 (Phytolaccaceae). Int J Biomed Eng Clin Sci, 5(3), 31.
- Jahan, N., & Datta, E. (2015). A comparative study on dyeing of cotton and silk fabric using madder as a natural dye. IOSR J Poly Text Eng, 2(2), 5-9.
- Jordeva, S., Kertakova, M., Zhezhova, S., Golomeova-Longurova, S., & Mojsov, K. (2020). Dyeing of textiles with natural dyes. Tekstilna industrija, 68(4), 12-21.
- Kadolph, S. J. (2010). Textiles (11th ed.). Pearson Education.
- Kalapriya, K., Prabu, H. G., & Nithya, S. (2017). Comparative study on the dyeability of cotton, silk and polyester fabrics by conventional and electrochemical methods. Rasayan Journal of Chemistry, 10(4), 1330-1333.
- Karakas, H., & Yildiz, M. (2024). Dyeing of cotton and wool fibers with the aqueous extract of Alnus glutinosa leaves. Fibers and Polymers, 25(1), 123–130
- Kariuki, S. T., Kariuki, J. M., Mailu, B. M., & Muchiri, D. R. (2018). Isolation and characterisation of chemical compounds from the plants, Phytolacca octandra (L.), Phytolacca dodecandra (Lherit) and Balanites aegyptiaca (L.) commonly used to control schistosomiasis transmitting snails in Kenya. African Journal of Pure and Applied Chemistry, 12(6), 38-41.
- Kariuki, S. T., Kariuki, J. M., Mailu, B. M., & Muchiri, D. R. (2016). Phytolacca octandra (L.), Phytolacca dodecandra (Lherit) and Balanites aegypiaca (L.) extracts as potential molluscicides of schistosomiasis transmitting snails. Journal of Medicinal Plants Research, 10(44), 823-828.
- Khan, A., Hussain, M. T., & Jiang, H. (2018). Dyeing of silk fabric with natural dye from camphor (Cinnamomum camphora) plant leaf extract. Coloration Technology, 134(4), 266-270.

- Khan, B., Sindhyan, R., Divan, A., & Rathod, S. (2018). Extraction, characterization & applications of natural dyes. Annals of Plant Sciences, 7(11), 2463-2467.
- Khattab, T. A., Abdelrahman, M. S., & Rehan, M. (2020). Textile dyeing industry: environmental impacts and remediation. Environmental Science and Pollution Research, 27(4), 3803-3818.
- Khatun, M. H., & Mostafa, M. G. (2022). Optimization of dyeing process of natural dye extracted from Polyalthia longifolia leaves on silk and cotton fabrics. Journal of Natural Fibers, 19(16), 12996-13011.
- Kumbhar, S., Hankare, P., Sabale, S., & Kumbhar, R. (2019). Eco-friendly dyeing of cotton with brown natural dye extracted from Ficus amplissima Smith leaves. Environmental Chemistry Letters, 17(2), 1161-1166.
- Kumbhar, S., Hankare, P., Sabale, S., & Kumbhar, R. (2019). Eco-friendly dyeing of cotton with brown natural dye extracted from Ficus amplissima Smith leaves. Environmental Chemistry Letters.
- Kushwaha, A., Kesarwani, P., & Kushwaha, R. Bio-Scouring-An Advancement In Preliminary Processing Of Textile.
- Lee, J., Kang, M. H., Lee, K. B., & Lee, Y. (2013). Characterization of natural dyes and traditional Korean silk fabric by surface analytical techniques. Materials, 6(5), 2007-2025.
- Letsiwe Mabuza, Nadine Sonnenberg, Nadene Marx-Pienaar. (2023) "Natural versus synthetic dyes". Resources, Conservation & Recycling Advances. Vol 18.
- Li, K., Ding, Q., & Zhang, H. (2022). Eco-friendly dyeing of cotton fabric using natural dye from orange peel. The Journal of the Textile Institute, 113(3), 360-366.
- Lovell, H. M. (1946). Rayon structure and crystallinity. Industrial and Engineering Chemistry, 38(8), 811–817.
- Mansour, R., Ezzili, B., & Farouk, M. (2017). The use of response surface method to optimize the extraction of natural dye from winery waste in textile dyeing. The Journal of The Textile Institute, 108(4), 528-537.
- Marsden R (1982) The synthesis and examination of azo dyes derived from novel coupler. Ph. D. Thesis, University of Leeds, UK
- Mather, R. R., Wardman, R. H., & Rana, S. (2023). The chemistry of textile fibres. Royal Society of chemistry.

- Mikkelson, A., & Kvist, E. (2007). Dyeing and chemical technology of textile fibers (7th ed.). Elsevier.
- Mojsov, K. (2016). Bioscouring and bleaching process of cotton fabrics—an opportunity of saving water and energy. The Journal of The Textile Institute, 107(7), 905-911.
- Mozaffari, E., & Maleki, B. (2018). Alum mineral and the importance for textile dyeing. Current Trends in Fashion Technology & Textile Engineering, 3(4), 85-87.
- Nadeem, T., Javed, K., Anwar, F., Malik, M. H., & Khan, A. (2024). Sustainable dyeing of wool and silk with conocarpus erectus L. leaf extract for the development of functional textiles. Sustainability, 16(2), 811.
- Nambela, L., Haule, L. V., & Mgani, Q. (2020). A review on source, chemistry, green synthesis and application of textile colorants. Journal of Cleaner Production, 246, 119036.
- Naveed, T., Rehman, F., Sanbhal, N., Ali, B. A., Yueqi, Z., Farooq, O., & Wang, W. (2020). Novel natural dye extraction methods and mordants for textile applications.
 Surface Review and Letters, 27(04), 1950135.
- Nickerson, R. F. (1940). Cotton fibers: Constitution, structure, and mechanical properties. Industrial and Engineering Chemistry, 32(11), 1454–1462
- Okwudo, E., & Ezema, P. (2025). Determination of Dyeing Efficiency of Natural Dye from Teak (Tectona grandis) Leaves by Home Economics Students of Michael Okpara University of Agriculture, Umudike. International Journal of Educational Studies, 1(1), 49-58.
- Park, Su-Youn & Xjung, Su-Youn. (2014). Technical approaches of a natural dye extracted from Phytolacca americana L.-berries with chemical mordants. Technology and health care: official journal of the European Society for Engineering and Medicine. 22. 10.3233/THC-140789.
- Patel, B., & Kanade, P. (2019). Sustainable dyeing and printing with natural colours vis-à-vis preparation of hygienic viscose rayon fabric. Sustainable Materials and Technologies, 22, e00116.
- Prabhu, K. H., & Bhute, A. S. (2012). Plant based natural dyes and mordants: A Review. J. Nat. Prod. Plant Resour, 2(6), 649-664.
- Punrattanasin, N., Nakpathom, M., Somboon, B., Narumol, N., Rungruangkitkrai, N.,
 & Mongkholrattanasit, R. (2013). Silk fabric dyeing with natural dye from mangrove

- bark (Rhizophora apiculata Blume) extract. Industrial Crops and Products, 49, 122-129.
- Punrattanasin, N., Nakpathom, M., Somboon, B., Narumol, N., Rungruangkitkrai, N.,
 & Mongkholrattanasit, R. (2013). Silk fabric dyeing with natural dye from mangrove bark (Rhizophora apiculata Blume) extract. Industrial Crops and Products, 49, 122-129.
- Qadariyah, L., Azizah, N., Syafa'atullah, A. Q., Bhuana, D. S., & Mahfud, M. (2019).
 The extraction of natural dyes from Henna leaves (Lawsonia inermis L.) by ultrasound-assisted method. IOP Conference Series: Materials Science and Engineering, 543(1), 012082.
- Rahayu, S., Hidayatullah, K., Dewi, D. L., Ardianto, T., Kurniawidi, D. W., & Akhyar, H. (2024, March). Innovation of rayon fabric dyeing based on eco-friendly technology using anthocyanins. In AIP Conference Proceedings (Vol. 3026, No. 1). AIP Publishing.
- Rani, R., & Khan, M. A. (2018). Eco-friendly dyeing of cotton with brown natural dye extracted from Ficus amplissima Smith leaves. Research Journal of Textile and Apparel, 22(1), 1–9
- Rehman, A., Ahmad, A., Hameed, A., Kiran, S., & Farooq, T. (2021). Green dyeing of modified cotton fabric with Acalypha wilkesiana leave extracts. Sustainable Chemistry and Pharmacy, 21, 100432.
- Repon, M. R., Dev, B., Rahman, M. A., Jurkonienė, S., Haji, A., Alim, M. A., & Kumpikaitė, E. (2024). Textile dyeing using natural mordants and dyes: a review. Environmental Chemistry Letters, 22(3), 1473-1520.
- Repon, M. R., Islam, M. T., & Mamun, M. A. (2017). Ecological risk assessment and health safety speculation during color fastness properties enhancement of natural dyed cotton through metallic mordants. Fashion and Textiles, 4(1), 24.
- Rohwer, J. G. (1993). Phytolaccaceae. In Flowering Plants · Dicotyledons: Magnoliid, Hamamelid and Caryophyllid Families (pp. 506-515). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Samanta, A. K., & Agarwal, P. (2009). Application of natural dyes on textiles.
- Samanta, P., Singhee, D., & Samanta, A. K. (2018). Fundamentals of natural dyeing of textiles: pros and cons. Curr. Trends Fashion Technol. Textile Eng, 2(001).

- Saxena, S., & Raja, A. S. M. (2014). Natural dyes: sources, chemistry, application and sustainability issues. In Roadmap to sustainable textiles and clothing: eco-friendly raw materials, technologies, and processing methods (pp. 37-80). Singapore: Springer Singapore.
- Saxena, S., & Raja, A. S. M. (2014). Natural dyes: Sources, chemistry, application and sustainability issues. In S. S. Muthu (Ed.), Roadmap to sustainable textiles and clothing (pp. 37–80). Springer.
- Schrand, T. (2020, September 17). How to make natural brown fabric dye from plants. The Spruce Crafts
- Shariful Islam, S. M., Alam, M., & Akter, S. (2020). Investigation of the color fastness properties of natural dyes on cotton fabrics. Fibers and Textiles, 27(1), 1-6.
- Shirmohammadli, Y., Efhamisisi, D., & Pizzi, A. (2018). Tannins as a sustainable raw material for green chemistry: A review. Industrial crops and products, 126, 316-332.
- Shore, J. (1995). Cellulosics dyeing. Society of Dyers and Colourist
- Singh, M., Vajpayee, M., & Ledwani, L. (2021). Eco-friendly surface modification of natural fibres to improve dye uptake using natural dyes and application of natural dyes in fabric finishing: A review. Materials Today: Proceedings, 43, 2868-2871.
- Singh, S. H. W. E. T. A., & Singh, D. R. (2018). Application of natural mordants on textile. International Journal of Applied Home Science, 5(1), 252-260.
- Sk, Md Salauddin & Mia, Rony & Haque, Anamul & Shamim, Al. (2021). Review on Extraction and Application of Natural Dyes. Textile & Leather Review. 4. 10.31881/TLR.2021.09.
- Song, J. E., Kim, S. M., & Kim, H. R. (2017). Improvement of dye affinity in natural dyeing using Terminalia chebula retzius (T. chebula) applied to leather. International Journal of Clothing Science and Technology, 29(5), 610-626.
- Talib, A., Adeel, S., Ali, A., Ahmad, T., Hussaan, M., & Qayyum, M. A. (2023). Sustainable isolation and application of plant extract-based natural dye for bio-dyeing of silk fabric. Coatings, 13(1), 112.
- Talib, A., Adeel, S., Ali, A., Ahmad, T., Hussaan, M., & Qayyum, M. A. (2023). Sustainable isolation and application of plant extract-based natural dye for bio-dyeing of silk fabric. Coatings, 13(1), 112.

- Tanapongpipat, A., Khamman, C., Pruksathorm, K., & Hunsom, M. (2008). Process modification in the scouring process of textile industry. Journal of Cleaner Production, 16(1), 152-158.
- Tayade, P. B., & Adivarekar, R. V. (2013). Dyeing of silk fabric with Cuminum Cyminum L as a source of natural dye. International Journal of ChemTech Research, 5(2), 699-706.
- Te
- Kumbhar, S., Hankare, P., Sabale, S., & Kumbhar, R. (2019). Eco-friendly dyeing of cotton with brown natural dye extracted from *Ficus amplissima* Smith leaves. *Environmental Chemistry Letters*.
- Qadariyah, L., Azizah, N., Syafa'atullah, A. Q., Bhuana, D. S., & Mahfud, M. (2019).
 The extraction of natural dyes from Henna leaves (Lawsonia inermis L.) by ultrasound-assisted method. IOP Conference Series: Materials Science and Engineering, 543(1), 012082.
- Saxena, S., & Raja, A. S. M. (2014). Natural dyes: Sources, chemistry, application and sustainability issues. In S. S. Muthu (Ed.), Roadmap to sustainable textiles and clothing (pp. 37–80). Springer.
- Shirmohammadli, Y., Efhamisisi, D., & Pizzi, A. (2018). Tannins as a sustainable raw material for green chemistry: A review. *Industrial crops and products*, *126*, 316-332.
- Tutak, M., Duran, K., & Sariisik, M. (2011). Dyeing properties and color fastness of cotton, wool, and viscose fabrics dyed with walnut (Juglans regia L.) waste. Asian Journal of Chemistry, 23(12), 5439–5444.