ГВ222340W	Reg. No :

Nama	
Name	

B. Sc. DEGREE (C.B.C.S.) EXAMINATION, MARCH 2023

2022 Admissions Regular & 2021 Admissions Supplementary / Improvement And 2020, 2019 And 2018 Admissions Supplementary

SEMESTER II - CORE COURSE (MATHEMATICS)

(COMMON FOR MATHEMATICS AND COMPUTER APPLICATIONS)

MT2B02B18 - NUMBER THEORY, CRYPTOGRAPHY, LAPLACE TRANSFORMS & CONIC SECTIONS Time: 3 Hours Part A Maximum Marks: 80

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- 1. If 3 doesnot divide n, then show that $\phi(3n) = 2\phi(n)$
- 2. Determine the remainder when 15! is divided by 17, using Wilson's theorem
- 3. Examine whether 1105 is an absolute pseudoprime
- 4. Define (a). Enciphering (b). Deciphering
- 5. Encipher the message "Happy days are here" using the autokey cipher with seed Q.
- 6. Determine whether the sequence 7, 27, 47, 97, 197, 397 is superincreasing
- 7. Compute $\mathcal{L}\{e^{-kt}(a\cos t + b\sin t)\}$
- 8. Find $\mathcal{L}\left\{\frac{1}{\sqrt{t}}\right\}$.
- 9. Find $\mathcal{L}\{e^{2t}\cos ht\}$
- 10. Write the polar equation for the circle $x^2 + (y+7)^2 = 49$.
- 11. Find the asymptotes of the hyperbola $y^2 3x^2 = 3$.
- 12. Find the focus and directrix of the parabola $x = 2y^2$.

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

13. If
$$a \equiv b \pmod{n}$$
 and $c \equiv d \pmod{n}$, then show that $(a+c) \equiv (b+d) \pmod{n}$ and $ac \equiv bd \pmod{n}$

- 14. Show that $18! \equiv -1 \pmod{437}$
- 15. Explain Autokey cryptosystem. Give an example.
- 16. A user of a Knapsack cryptosystem has the sequence 49, 32, 30 43 as listed encryption key. If the user's private key involves the modulus m=50 and multiplier a =33. Determine the secret superincreasing sequence.
- 17. State and prove Convolution theorem for Laplace Transforms.

18. Compute
$$\mathcal{L}^{-1}\{F(s)\}$$
 where $F(s) = \frac{1}{(s+a)(s+b)}$

- 19. Calculate the inverse Laplace Transform of $F(s) = \frac{10}{s^3 \pi s^2}$ using integration.
- ^{20.} Find a Cartesian equation for the hyperbola having focus at $(0, \pm \sqrt{2})$ and the equation of the asymptotes $y = \pm x$.
- 21. Write the polar equation for the circle whose Cartesian equation is given by $(x-6)^2 + y^2 = 36$. Also sketch the circle.

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

- 22. (a). State Chinese Remainder Theorem.
 - (b). Solve the linear congruence $17x \equiv 9 \pmod{276}$ using Chinese Remainder Theorem.
- 23. (a). Write a short note on Hill's Cipher.
 - (b). Use Hill's Cipher $C_1 \equiv 5P_1 + 2P_2 \pmod{26}$, $C_2 \equiv 3P_1 + 4P_2 \pmod{26}$ to encipher the message "GIVE THEM TIME".
- 24. (a). Solve the Volterra integral equation of the second kind $y(t) + \int_0^t y(\tau) \cos h(t-\tau) d\tau = t + e^t$.
 - (b). Find the inverse Laplace Transform of $H(s) = \frac{1}{(s^2 + w^2)^2}$ by convolution.
- 25. (a). A wheel of radius a rolls along a horizontal straight line. Find the parametric equations for the path traced by a point P on the wheel's circumference. (b). Find a Cartesian equation for the hyprbola centered at the origin that has focus at (3, 0) and the line x=1 as the corresponding directrix.