Time: 3 Hours

Name :.....

B. Sc. DEGREE (C.B.C.S.) EXAMINATION, MARCH 2023

2022 Admissions Regular & 2021 Admissions Supplementary / Improvement And 2020, 2019 And 2018

Admissions Supplementary

SEMESTER II - COMPLEMENTARY COURSE 1 (STATISTICS)

(For Mathematics and Physicis)

ST2C01B18 - PROBABILITY AND RANDOM VARIABLES

Part A Maximum Marks : 80

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- 1. What is the effect of change of origin and scale on correlation coefficient.
- 2. Show that $2r\sigma_x\sigma_y = \sigma_x^2 + \sigma_y^2 \sigma_{x-y}^2$
- 3. Distinguish between univariate and bivariate data.
- 4. Give the standard error estimates of two regression lines.
- 5. Show that correlation coefficient is the G.M of two regression coefficients .
- 6. Write down the normal equations used for fitting a curve $y = ae^{bx}$.
- 7. Explain the terms sample space and events.
- 8. If A, B, C are three events such that P(A) = P(B) = P(C) = 1/2, P(AB) = P(AC) = 1/3 and P(BC) = 0 Find P(AU BU C).
- 9. If $P(A) = P_1$, $P(B) = P_2$ and $P(AB) = P_3$, find P(A/B)
- 10. If $f(x,y) = ke^{-x-2y}$; x>0, y>0 is the joint p.d.f. of (X,Y), find k.
- 11. If $f(x,y) = \frac{xy^2}{30}$; x = 1,2,3; y = 1,2 is the joint p.d.f. of (X,Y), find the marginal p.d.f. of Y.
- 12. For the density function $f(x) = k e^{-\theta x}$; $x \ge 0$ and $\theta \ge 0$ and 0 elsewhere, find the value of k

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. If x and y are independent variables such that x = y = 0, $s_x = 9$ and $s_y = 12$, find the value of k so that x + 2y and kx y are uncorrelated.
- 14. Find the value of k so that the correlation between X+kY and X+Y is a maximum where X and Y are independent variables each with mean 0 and variance unity
- 15. How can the two regression lines be identified?
- 16. Fit an equation of the form $y = ax^b$ to the following data

х	0	1	2	3	4
у	32	47	65	92	132

- 17. Distinguish between probability density function and distribution function of a continuous random variable. Give their properties.
- 18. Define joint probability distribution function and give its properties.
- 19. An unbiased die is tossed till an odd number appears. Obtain the probability distribution of the number of tosses.

20. A discrete random variable has the following probability function

,	x	0		2	3	4	5	6	7	8
	p(x)	а	3a	5a	7a	9a	11a	13a	15a	17a

Find (i) the value of 'a' (ii) P(x < 3)

21. A random variable X has p.d.f. $f(x) = \frac{1}{2a}$; $-a \le x \le a$. Find a so that P[|X|<1] = P[|X|>1].

Part C

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

22. Calculate the coefficient of correlation from the following data

х	10	15	12	17	13		24	14	22
	30	42	45		33	34	40	35	39

23. Fit a curve of the form $y = a + bx + cx^2$ to the following data

х	1	2	3	4	5	6	7
у	2.3	5.2	9.7	16.5	29.4	35.5	54.4

- 24. (a) State and prove the Baye's theorem on probability. (b) A textile shop buys clothes from three different mills, say A, B & C. 20% of the cloth bought are from mill A, 50% from mill B and 30% from mill C. From past experience it is known that 2%, 3% and 2% of the clothes of mills A, B and C respectively are defective. On general inspection of the entire production a specimen cloth is selected at random and is found to be defective. Find the probability that it was produced by mill B.
- 25. The joint p.d.f of (X,Y) is given in the following table. Find
- (a) The marginal distributions.

(b)
$$f(x/y = 3)$$
 and $f(y/x = 2)$

(c)
$$P(X \ge 2)$$

(d) Examine whether X and Y are independent.

X Y	1	2	3
1	0.10	0.20	0.10
2	0.15	0.10	0.18
3	0.02	0.05	0.10