Time: 3 hours Maximum marks: 80

Part A

(Answer all. Each question carries 1 mark.)

- 1. Define the terms: **Tautology**, **Proposition**
- 2. Define **TOSET**
- 3. Draw the Venn diagram of $A \cap B$, where A and B are any sets.
- 4. State the De Morgan's Laws
- 5. The contrapositive of $p \Rightarrow q$ is
- 6. Give an example of two non empty sets which are disjoint.

 $(6 \times 1 = 6)$

Part B

(Answer any seven questions. Each question carries 2 marks)

- 7. Define Partial Order Relation.
- 8. Let $A = \{1, 2, 3\}$ and $B = \{4, 5\}$. Find $A \times B$ and $B \times A$.
- 9. Let $f: X \to X$, where $X = \{x \mid x \in IR\}$ where f(x) = 3x + 2. Check whether f is one-one and onto
- 10. Explain Roaster form and Set Builder form with an example each.
- 11. Let $P = \{\phi, \{a\}, \{a, b\}, \{a, b, c\}\}$ and let \subseteq be the relation of inclusion on P.Draw the Hasse diagram of (P, \subseteq)
- 12. Define an equivalence relation.
- 13. Define a Lattice with an example
- 14. Translate the given english sentence into logical form:
 - (a) There exists a horse such that it can add
 - (b) Every bird can fly
- 15. Let $P = \{ \phi, \{a\}, \{a, b\}, \{a, b, c\} \}$ and let \subseteq be the relation of inclusion on P. Then the GLB of $\{a\}$ and $\{a, b\}$ is
- 16. Let $A = \{2, 3, 4, 5, 6\}$ and $B = \{3, 4, 7, 10, 12\}$.
 - (a) Then A B = ?
 - (b) Then B A = ?

 $(7 \times 2 = 14)$

Part C

(Answer any five questions. Each question carries 6 marks.)

- 17. Prove that: $A B = \phi$ iff $A \subseteq B$
- 18. Let *S* be any collection of sets. Then prove that the relation \subseteq of set inclusion is a partial order relation on *S*.
- 19. Let D_{36} denote the set of all divisors of 36. Draw the Hasse diagram of D_{36} under divisibility.
- 20. Factorise $x^7 1$ into real factors.
- 21. Prove that: $\cosh^2 x \sinh^2 x = 1$
- 22. Prove that: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 23. Separate $log(\alpha + i\beta)$ into real and imaginary parts.
- 24. Let the relation R be defined on the set IN of natural numbers by $R = \{(a, b) | a | b\}$. Show that R is a partial ordering of IN.

 $(5 \times 6 = 30)$

Part D

(Answer any two questions. Each question carries 15 marks.)

- 25. Define Product Set with order and show that it is a partial order relation
- 26. Prove that
- (a) $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- (b) $\overline{A \cap B} = \overline{A} \cup \overline{B}$
- 27. If -1 < r < 1, show that $\sum_{n=1}^{\infty} r^n \sin(n x) = \frac{r \sin x}{1 2r \cos x + r^2}$
- 28. Factorise : $x^8 2x^4 \cos 60^{\circ} + 1$