	-			
TB	20	165	sO U	W

Reg. No :....

Name :.....

B.Sc. DEGREE (C.B.C.S.) EXAMINATION, MARCH 2023 (2020 Admission Regular, 2019, 2018 Admissions Supplementary) **SEMESTER VI - CORE COURSE (MATHEMATICS)**

MT6B10B18 - COMPLEX ANALYSIS

Time: 3 Hours Maximum Marks: 80

Part A

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- Split into real and imaginary parts. $f(z) = z + \frac{1}{z}$.
- Define closure of a set S.
- 3. Evaluate $\lim_{z \to i} \frac{iz^3 - 1}{z + i}$.
- Using the formal definition of a derivative evaluate $f^{l}(z)$, where $f(z) = z^{2}$.
- Define a domain.
- Evaluate $\int_{0}^{1} (1+it)^2 dt$.
- Evaluate $\int_{-z}^{z} dz$ where C is the right hand semi circle of $|z| = 2(-\pi/2 \le \theta \le \pi/2)$.
- Define a simply connected domain. Is the region between two concentric circles simply connected or multiply
- Find the series representation of $\frac{1}{1-z}$. (|z| < 1)
- Show that when $z \neq 0$, $\frac{\sin z^2}{z^4} = \frac{1}{z^2} \frac{z^2}{3!} + \frac{z^6}{5!} \dots$
- 11. Find the order of the zero of $f(z) = z(e^z 1)$ at z=0.
- Show that z=0 is a pole of order 2 for $f(z) = \frac{1}{z^2(1+z)}$.

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- Evaluate $\int_{a}^{\pi/4} e^{it} dt$.
- 14. Show that if v and V are harmonic conjugates of u in a domain D, then v and V can differ at most by an additive constant
- Identify the points where f(z) fails to be analytic. a) $f(z) = \frac{2z+1}{z(z^2+1)}$ b) $f(z) = \frac{z^3+i}{z^2-3z+2}$.
- Evaluate $\int_{\mathbb{R}} f(z)dz \text{ where } f(z) = \frac{z^2+1}{z^2-1} \text{ where } c: |z| = 2.$
- 17. State and prove ML inequality theorem.

18. Evaluate
$$\int_C \frac{z^2 - 1/3}{z^3 - z} dz$$
 where C is $|z - 1/2| = 1$

19. Show that when
$$z \neq 0$$
 $\frac{\sin hz}{z^2} = \frac{1}{z} + \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+3)!} \ 0 < |z| < \infty$

- 20. Write the principal part of $\frac{z^2}{1+z}$ at its isolated singular point and determine whether the point is a pole, a removable singularity, or an essential singular point.
- 21. Find the order of the pole and its residue at z=2 of $\frac{z^2-2z+3}{z-2}$.

Part C

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

22. a. Evaluate
$$i^{-2i}$$
.

b. Show that
$$\sin^{-1} z = -i \log[iz + (1-z^2)^{1/2}]$$
.

- c. Find the solutions of $e^{z}=3$.
- d. Evaluate log(-1).
- e. Solve $e^z = 1 + i$.

23. If
$$f(z)$$
 is an analytic function inside and on a closed contour C described in the positive sense and z_0 is an interior point of C ,then prove that
$$f^n(z_0) = \frac{n!}{2\pi i} \int_{c}^{c} \frac{f(z)}{(z-z_0)^{n+1}} dz$$

24. a. Find the expansion of the function
$$f(z) = \frac{5z-2}{(z-1)(z-2)}$$
 in the region.

(i)
$$|z| < 1$$
 (ii) $1 < |z| < 2$ (iii) $|z| > 2$

b. Find the Laurent's series expansion of
$$f(z) = \frac{1+z^2}{z^2+z}$$
 in the region 0<|z|<1

25. Use residue to evaluate
$$\int_0^\infty \frac{x^2 dx}{x^6 + 1}.$$