TB206275W Reg. No :.....

Name :....

B. Sc. DEGREE (C.B.C.S) EXAMINATION, MARCH 2023

(2020 Admission Regular, 2019, 2018 Admissions Supplementary)

SEMESTER VI - CORE COURSE (MATHEMATICS)

MT6B09B18 - REAL ANALYSIS -II

Time: 3 Hours (Common for Mathematics and Computer Applications) Maximum Marks: 80

Part A

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- 1. Prove that the series $\sum r^n$ converges if 0 < r < 1
- 2. Give an example of an infinite series for which Raabe's test fails. Justify your answer.
- 3. Give an example of a diverging series $\sum U_n$ with $\lim_{n \to \infty} \frac{U_{n+1}}{U_n} = 1$
- 4. Define uniform continuity with the help of an example.
- 5. Prove that difference of two continuous functions is continuous.
- 6. If f and g are functions continuous at a point c, then prove that (f + g) is continuous at c.
- 7. Define lower integral of a bounded function f over [a,b]
- 8. Define lower Darboux sum of a bounded function f over [a,b]
- 9. Find the upper integral of the function $f(x) = x^2$ over [0, 4].
- 10. Compute the lower Darboux sum L(P, f) of the function f(x) = 2x + 3 for the partition $P = \{2, 2.2, 2.9, 3\}$ of [2, 3].
- 11. State a test using for checking the uniform convergence of a series of functions.
- 12. Check the uniform convergence of the series whose n^{th} term is $(1.8)^n \sin(n^2 x)$ for all real values of x.

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. State and prove limit form of comparison test.
- ^{14.} Check the convergence of the series whose nth term is given by $(n^3 + 1)^{1/3} n$
- 15. A function continuous on a closed interval [a, b] is uniformly continuous on [a, b]. Is the converse true?
- 16. Discuss the continuity of the function f defined on R by

$$f(x) = \begin{cases} -x^2, & \text{if } x \leq 0 \\ 5x - 4, & \text{if } 0 < x \leq 1 \\ 4x^2 - 3x & \text{if } 1 < x < 2 \\ 3x + 4 & \text{if } x \geq 2 \end{cases}$$

at the points x = 0, 1 and 2.

- 17. Prove or disprove : If | f | is bounded and integrable on [a, b], then f is bounded and integrable on [a, b].
- 18. If f and g are bounded and integrable functions on [a,b] such that $f \geq g$, then prove that

$$\int_{a}^{b} f dx \ge \int_{a}^{b} g dx ; b \ge a$$

- 19. If a refinement P^* of the partition P of [a, b] contains p points more than P, and $f(x) \le k \ \forall x \in [a, b]$, then prove that $L(P, f) \le L(P^*, f) \le L(P, f) + 2pk\mu$ where μ is the norm of P.
- 20. State and prove Weierstrass M- test for uniform convergence of a series of functions.
- 21. Show that $\{f_n\}$ where $f_n(x) = tan^{-1} nx$, x > 0 is uniformly convergent in [1, 2].

Part C

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

- 22. Define an alternating series. State and prove the Leibnitz test for checking the convergence of an alternating series.
- 23. (a) If a function f is continuous on [a,b] and f(a).f(b) < 0, then prove that there exist at least one point c in (a, b) such that f(c) = 0.
 - (b) Show that the function f(x) defined on R by

$$f(x) = \begin{cases} x , & \text{if } x \text{ is irrational} \\ -x, & \text{if } x \text{ is rational} \end{cases}$$

is continuous only at x=0.

- 24. (a) State and prove Darboux's theorem.
 - (b) Prove that, a function is integrable over [a, b] iff there is a number I lying between L(P, f) and U(P, f) such that for every $\mathcal{E} > 0$, there exist a partition P of [a, b] such that $|U(P, f) I| < \mathcal{E}$ and $|I L(P, f)| < \mathcal{E}$
- 25. a) State and prove Weierstrass M- test for uniform convergence of a series of functions
 - b) Define Pointwise convergence and Uniform convergence with the help of an example.