~		^	-	^	4	,	4	7
	×	-,	~	n	7	~	7	_

Reg. N	o :
Name	

BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, MARCH 2025 2018, 2019, 2020, 2021 ADMISSIONS SUPPLEMENTARY SEMESTER VI - CORE COURSE (MATHEMATICS)

MT6B12B18 - Linear Algebra

Time: 3 Hours

Maximum Marks: 80

Part A

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- 1. Give an example of a two dimensional vector space.
- 2. Determine whether $S = \{p(t) \in \mathbb{P}^2 | p(2) = 1\}$ is a subspace of \mathbb{P}^2 ?
- 3. Define similar matrices.
- 4. Determine whether the transformation L is linear if $L: \mathbb{R}^2 \mapsto \mathbb{R}^2$ is defined by $L \begin{bmatrix} a & b \end{bmatrix} = \begin{bmatrix} a & 0 \end{bmatrix}$ for all real numbers a and b.
- 5. A linear transformation $T: \mathbb{R}^2 \mapsto \mathbb{R}^2$ has the property that $T\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$ and $T\begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 7 \\ 8 \end{bmatrix}$. Determine $T(\bar{v})$ for any vector $\bar{v} \in \mathbb{R}^2$.
- 6. Define eigen vector of a linear transformation.
- 7. Define characteristic equation of a matrix A.
- 8. Calculate < A, $B>_{\text{for}}A=\begin{bmatrix}4&3\\6&2\end{bmatrix}_{\text{and}}B=\begin{bmatrix}1&2\\1&2\end{bmatrix}_{\text{in the vector space }M_{2\times 2}\text{ with respect to the standard basis.}}$
- 9. A 3x3 matrix A is known to have the eigen values -2, 2 and 4. Calculate the eigen values of $A \pm 3I$.
- 10. State the generalized theorem of Pythagoras.

11.
$$\bar{x}=\begin{bmatrix}1\\2\\3\end{bmatrix} \quad \bar{y}=\begin{bmatrix}-3\\-6\\5\end{bmatrix} \text{are orthogonal ?}$$

12. Determine whether $\{ar{x},ar{y},ar{z}\}$ is an orthogonal set of vectors in \mathbb{R}^3 where

$$\bar{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \bar{y} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \bar{z} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}_?$$

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. Establish that if a set of vectors S in a vector space V is linearly independent, then any subset of S is also linearly independent.
- 14. For any vector \bar{w} in a vector space V, prove that $-(-\bar{w})=\bar{w}$
- 15. In any vector space V, prove that $\alpha\odot\bar{0}=\bar{0}$, for every scalar α .
- 16. Establish that every linear transformation can be represented by a matrix.
- 17. Find $T(\bar u)$ for a linear transformation T if it is known that $T(\bar u+\bar v)=2\bar u+3\bar v$ and $T(\bar u-\bar v)=4\bar u+5\bar v$

- 18. Find the transition matrices between two bases $G=\{t+1,t-1\}$ and $H=\{2t+1,3t+1\}$ for \mathbb{P}^1
- 19. Prove that the eigen vectors of a matrix corresponding to distinct eigen values are linearly independent.
- 20. If \bar{x} is an eigen vector of A corresponding to the eigen value λ then prove that λ^n and \bar{x} are a corresponding pair of eigen values and eigen vectors of A^n , for any positive integer n.
- ^{21.} Establish that if \bar{x} and \bar{y} are orthogonal vectors in \mathbb{R}^n , then $||\bar{x}+\bar{y}||^2=||\bar{x}||^2+||\bar{y}||^2$

Part C

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

- 22. Let S be a non empty subset of a vector space V with operations \oplus and \odot . Prove that S is a subspace of V if and only if the following two closure conditions hold: a) Closure under addition and b) Closure under scalar multiplication.
- Calculate the transition matrix from $S = \{\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T \}_{to}$ to $T = \{\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T, \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T \}$
- 24. $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ Find a basis for the kernel and image of the matrix
- 25. $A = \begin{bmatrix} 2 & -1 & 0 \\ 3 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Find the eigen values and eigen vectors of