TD	A .	• 44	78	
115	/-	ωч	- / -	

Reg. N	0	*
--------	---	---

Mama	*
Raille	******************************

BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, MARCH 2025 2018, 2019, 2020, 2021, 2022 ADMISSIONS SUPPLEMENTARY **SEMESTER IV - COMPLEMENTARY COURSE 1 (MATHEMATICS)**

MT4C01B18 - Fourier Series, Partial Differential Equations, Numerical Analysis and Abstract Algebra

Time: 3 Hours

Maximum Marks: 80

Part A

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- Define odd functions.
- Verify that $P_0(x) = 1$
- Show that $P_3(x)=rac{1}{2}(5x^3-3x)$ 3.
- Write the equation to find the tangent plane at a point P (x,y,z) to the surface S whose equation is F(x,y,z)=0.
- Form a partial differential equation by eliminating the constants a and b from the equation $2z = (ax + y)^2 + b$
- Find the equation of the tangent plane to the surface x+y+z=0 at the point $(\frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},\frac{-3}{\sqrt{14}})$. Write Newton Perhaps for x=06.
- Write Newton Raphson formula for finding an approximate root of f(x)=0
- Does there exist a root between 2 and 3 for the equation $x(\sin x) = 2.5$? Justify your answer.
- Define Symmetric group on n letters
- 10. Define subgroup of a group G. Give an example.
- 11. Find the order of 5 in Z_6
- 12. Find the order of i and -i in the group {1, -1, i, -i} under the operation usual multiplication.

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- Show that $J_{rac{3}{2}}(x)=\sqrt{rac{2}{\pi \, x}} \left(rac{sinx}{x}-cosx
 ight)$ 13.
- 14. Solve using power series method: (1+x)y'=y
- 15. Find a general solution of the differential equation xy''+5y'+xy=0, in terms of J_v and J_{-v} . $(Hint: set \ y = \frac{a}{\sqrt{2}}).$
- 16. Show that $J_1'(x) = J_0(x) x^{-1}J_1(x)$
- Find the integral curves of the equations $\frac{dx}{z} = \frac{dy}{-z} = \frac{dz}{z^2 + (x+u)^2}$ **17**.
- 18. Find the positive root of the equation $x^2 4x + 3 = 0$ using bisection method.
- 19. If G is a group with binary operation * and if a and b are any two elements of G, show that the linear equations a*x=b and y*a=b have unique solution in G.
- 20. Define a skew field. Check whether $<\mathbb{Z},+\ldots>$ is a skew field where '+' is the usual addition. '.' is the usual multiplication and $\mathbb Z$ is the set of integers.

21. Define Kernel of a group Homomorphism. Find the kernel of the homomorphism $g:\mathbb{Z}\to\mathbb{R}$ under addition defined by g(x)=x.

Part C

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

22. (a) Using the values
$$J_1(2)=0.5767,\ J_0(2)=0.2239,\ J_1(1)=0.4401,\ J_0(1)=0.7652,$$
 evaluate
$$I=\int_1^2 x^{-3}J_4(x).$$

- (b) Find a general solution of the differential equation $xy'' 5y' + xy = 0 \ (Hint: puty = x^3u)$
- 23. $\frac{dx}{(\text{a) Find the integral curves of }} = \frac{dx}{x^2(y^3-z^3)} = \frac{dy}{y^2(z^3-x^3)} = \frac{dz}{z^2(x^3-y^3)}$ (b) Eliminate the arbitrary function f from the eqution z=xf(2x-y)+g(2x-y)
- (b) Eliminate the arbitrary function a front the equation
- 24. Obtain a root of the equation $x^3-18=0$ correct to three decimal places using bisection method
- 25. (a). Define * on Q^+ by $a*b=\frac{ab}{2}$. Show that Q^+ under the operation * is an abelian group.
 - (b). Show that the set G ={1,-1, i, -i} forms an abelian group with respect to multiplication.