Т	-	2	2	a	^	_	Λ	
	0	Z	3	o	3	3	u	_

Reg. No	•
---------	---

Name :.....

Integrated M.A. Programme in Social Sciences (C.S.S) EXAMINATION, JANUARY 2025 2020 ADMISSIONS REGULAR (ACCELERATED SEMESTER) SEMESTER VIII - ELECTIVE COURSE EC08E02IM20 - Elective - Operations Research

Time: 3 Hours Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Give the mathematical and economic structure of linear programming problems?
- 2. What is Operations Research? Describe the managerial applications of Operations Research in decision-making.
- 3. Give the mathematical formulation of transportation problem.
- 4. Define an assignment Problem.
- 5. What is revenue management?
- 6. Define inventory.
- 7. What is traffic intensity?
- 8. Define utilization factor.
- 9. What do you mean by CPM?
- 10. What are the common errors in construction of a network?

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Explain the scope of OR.
- 12. A person requires 10, 12 and 12 units of chemicals A, B and C respectively for his garden. A liquid product contains 5, 2 and 1 units of A, B and C respectively per jar. A dry product contains 1, 2 and 4 units of A, B and C per carton. If the liquid product sells for ₹. 3 per jar and the dry product sells ₹. 2 per carton, how many of each should be purchased in order to minimize cost and meet the requirement?
- 13. State the difference between the Transportation Problem and Assignment Problem.
- 14. Briefly explain on EOQ.
- 15. How to make basic decisions on inventory? Bring out the importance of inventory decisions.
- 16. Explain unusual customer/server behaviour.
- 17. Explain in detail about various phases of project management.
- 18. Briefly explain on the time estimates in PERT.

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

19. Obtain an initial basic feasible solution to the following transportation problem using the Least-cost method.

	M ₁	M ₂	M ₃	M ₄	Warehouse Capacity
W ₁	11	13	17	14	250
W ₂	16	18	14	10	300
W ₃	21	24	13	10	400
Market Demand	200	225	275	250	950

- 20. Discuss the significance of inventory.
- 21. Elucidate on the concept of queuing theory.
- 22. Calculate the earliest start, earliest finish, latest start and latest finish of each activity of the project given below:

Activity	1-2	1-3	1-5	2-3	2-4	3-4	3-5	3-6	4-6	5-6
Duration (Weeks)	8	7	12	4	10	3	5	10	7	4