TA	R-	52	•	∙	a١	₩.
n st	n /	-		~	S.,	•

	Reg.	No	:	 		••••	
•	Mana		٠,		45 :	Ţ.	

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2025 2020, 2021, 2022, 2023 ADMISSIONS SUPPLEMENTARY

SEMESTER II - CORE COURSE

ST2C07TM - Stochastic Processes

Time: 3 Hours

Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Define first passage transition probability.
- 2. State Basic limit theorem for a M.C.
- 3. Define inverse transition probability.
- 4. Explain one dimensional random walk.
- 5. Explain random walk in space.
- 6. If X(s) is a Poisson process with parameter λ , then show that P[X(s) = k/X(t) = n](where $t \ge s$) follows Binomial distribution.
- 7. Explain pure birth process.
- 8. Find the characteristic function of a poisson process.
- 9. Define Renewal function.
- 10. Give the generalized form of Renewal equation.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

11. Prove that unity is the characteristic root of any transition probability matrix.

12.

For the three state Markov chain with TPM P = $\frac{0.40}{0.75}$ 0.18 0.07 Obtain the stationary distribution πk .

- 13. Let P(s) be the pgf associated with the offspring distribution P_k and $P_n(s)$ is associated with X_n . Then show that $P_n(s) = P_{n-1}[P(s)]$.
- 14. If the p.g.f of offspring distribution is $P(s) = \frac{q}{1-p.s}$, q > p, p + q. Obtain the distribution of ultimate extinction of the process.
- 15. Explain the relationship between Poisson process and Uniform distribution.
- 16. Explain Kolmogrov's forward differential equation.
- 17. Derive renewal equation for delayed renewal process.

18.

 $M(t) = \sum_{n=1}^{\infty} F_n(x)$ Show that the renewal function $\sum_{n=1}^{\infty} F_n(x) = P[S_n \leq x]$.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

19. (i) In usual notations, show that the state j is persistant iff $\sum p_{jj}^{(n)} = \infty$.

- (ii) A state j is transient iff $\sum p_{jj}^{(n)} < \infty$.
- (iii) A state j is recurrent if expected number of return is ∞ .
- 20. Prove in the usual notation that for a branching process {Xn, n=0,1,...} (a) the probability of extension is the smallest positive root of the equation S=P(s) (b) extinction is certain if and only if the mean number of the off springs per individual does not exceed unity.
- 21. Explain Yule Furry process. Find mean and variance.
- 22. For a renewal process $\{N(t); t > 0\}$, find the distribution of N(t).