TM252528H	TN	12	52	52	8	Н	
-----------	----	----	----	----	---	---	--

Reg.	No	:	••••••	•••••	

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2025 2020, 2021, 2022, 2023 ADMISSIONS SUPPLEMENTARY **SEMESTER II - CORE COURSE**

ST2C08TM - Multivariate Distributions

Time: 3 Hours

Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

Let the r. v X has a multinomial distribution with parameter $(n, P_1, P_2, \dots, P_n)$, obtain the assymptotic $Y=\sum_{i=1}^n[rac{(x_i-nP_i)^2}{nP_i(1-P_i)}]$. Also obtain the mean and variance of Y.

- 2. Define first form of Gumbel's bivariate exponential distribution.
- 3. Show that if (X, Y) has a bivariate normal distribution, X and Y are independent if and only if $\rho = 0$.
- Derive the distribution of the sample mean vector \overline{X} if $\, X \sim N_p(\mu, \Sigma) \,$
- Explain characterization property of p variate normal distribution.
- State and Prove Crames and Wold theorem. 6.
- 7. Define Wishart distribution.
- Define generalized variance of the multivariate distribution.
- Give the necessary and sufficient condition for the independence of two quadratic form.
- 10. If A is a symmetric matrix X is a random vector, prove that E(X'AX) = tr(A[E(XX')])

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. For Gumbel's first form of Bivariate Exponential distribution find the conditional distribution f(y/x).
- 12. Show that the marginal distribution of y of a bivariate normal distribution is univariate normal with mean μ_2 and variance ${\sigma_2}^2$
- 13. If $X \sim N_p(\mu, \Sigma)$, then X can be written as $X = \mu + CY$ where, $\Sigma = CC'$ and $Y \sim N_p(0, I)$
- 14. Show that if $X \sim N_p(\mu, \Sigma)$ if and only if every linear combination of X say $T'X \sim N_1(T'\mu, T'\Sigma T)$
- 15. Let X and Y be pxp symmetric matrices of real variables and A be a pxp non singular matrix of constants. Then if Y = AXA' show that $dY = |A|^{p+1} dX$.
- 16. Let X be a real symmetric pxp matrix and T is a lower triangular matrix with $|t_{jj}>0, j=1,2,....$ then if

$$dX = 2^{p} \prod_{j=1}^{p} (t_{jj})^{p-j+1} dT$$

X = TT' Show that

- 17. Explain the estimation of multiple correlation.
- 18. Let X_1, X_2, \ldots, X_n be n independent random variables such that each $X_i \sim N(0,1)$. Show that $\sum_{i=1}^{\infty} (x_i - \overline{x})^2$ and \overline{x}^2 are independent.

- 19. Derive the Characteristic function of bivariate normal distribution.
- 20. Show that the mean of a random sample of size N from $N(\mu, \Sigma)$ is distributed according to $N(\mu, \frac{\Sigma}{N})$ and independently of the m.l.e estimate of Σ namely \overline{N} .
- 21. Derive the distribution of the U statistic where, $U=\frac{|A|}{|A+H|}$. Where $A\sim W(\Sigma,n)$, and $H\sim W(\Sigma,m)$. A and H are independently distributed.
- 22. State and prove Cochran's theorem.