				_	_
TA	A 2	252	55	G.	-

Reg. No	•
Name :	

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2025 2020, 2021, 2022, 2023 ADMISSIONS SUPPLEMENTARY SEMESTER II - CORE COURSE

MT2C08TM20 - Advanced Complex Analysis

Time: 3 Hours

Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- Define Poisson integral of a piecewise continuous function U and show that the Poisson integral of a constant is a constant.
- 2. Write a brief note on Dirichlet's problem.
- 3. Derive the Maclaurin series for sin -1 z.
- 4. Show that $\prod_{n=2}^{\infty} (1 \frac{1}{n^2}) = \frac{1}{2}$.
- 5. Prove: (a) $\Gamma(1) = 1$, (b) $\Gamma(n) = (n-1)!$
- 6. Show that $\zeta(s) \Gamma(s) = \int_0^\infty \frac{x^{s-1}}{e^x 1} dx$ where $\sigma > 1$.
- 7. Briefly describe the zeros of Zeta function.
- 8. State and prove a necessary and sufficient condition for a family of functions to be normal.
- 9. Define primitive period of a function. Give an example.
- 10. Explain the fundamental region of the unimodular group.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Derive Schwarz's formula.
- 12. Define a subharmonic function and show that every harmonic function is trivially subharmonic. Give an example of a subharmonic function which is not harmonic.
- 13. Find the Taylor series expansion of $\frac{1}{z}$ at z = 1 and z = 2i.
- 14. Express sin πz in the form of canonical product.
- 15. Let f be a topological mapping of a region Ω onto a region Ω' . If $\{z_n\}$ or z(t) tends to the boundary of Ω , then show that $\{f(z_n)\}$ or f(z(t)) tends to the boundary of Ω' .
- 16. Prove that the function $\varphi(s) = \frac{1}{2} s (1 s) \pi^{-s/2} \Gamma\left(\frac{s}{2}\right) \zeta(s)$ is entire and satisfies $\varphi(s) = \varphi(1 s)$.
- 17. Drive the relation connecting Weierstrass Zeta function and sigma function.
- 18. Prove that any two bases of the same module are connected by a unimodular transformation.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

19. (a) Derive the Gauss Mean Value property for harmonic functions.

- (b) Prove that the function $P_U(z)$ is harmonic for |z| < 1 and show that $\lim_{z \to e^{i\theta_0}} P_U(z) = U(\theta_0)$ provided that U is continuous at θ_0 .
- 20. (a) Find Mittag-Leffler representation of π cot πz .
 - (b) Derive Legender's Duplication Formula.
- 21. Prove the functional equation $\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)$.
- 22. Establish the theorem on the existence of the canonical basis for the discrete module M of a meromorphic function.