TB14562	\mathbf{q}
---------	--------------

Name	••
Reg No	

B. Sc. DEGREE (C.B.C.S.S) EXAMINATION, NOVEMBER 2018 (2014 Admission Supplementary) SEMESTER V - CORE COURSE (MATHEMATICS) MAT5AA - ABSTRACT ALGEBRA

Time: Three Hours

Maximum Marks: 80

PART A

- I. Answer all questions. Each question carries 1 mark.
- 1. How many different binary operations can be defined on a set having exactly 2 elements
- 2. Give an example of an abelian group which is not cyclic
- 3. Find the order of the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 5 & 4 & 6 & 3 \end{pmatrix}$ in S₆
- 4. Is $\langle Z, + \rangle$ isomorphic to $\langle Q, + \rangle$
- 5. Define normal subgroup of a group G.
- 6. What are the units of \mathbb{Z}_5
- 7. Define Kernel of a group homomorphism
- Define Skew field.
- 9. Check whether Q is an ideal of R.
- 10. Find the characteristic of the ring Z_n

(10x1=10)

PART B

- II. Answer any eight questions. Each question carries 2 marks.
- 11. Show that every group G with identity e and such that x * x = e for al $x \in G$ isabelian.
- 12. Prove left cancellation law.
- 13. State that the set $G=\{1,-1,i,-i\}$ forms an abelian group with respect to multiplication
- 14. Prove that every cyclic group is abelian
- 15. Show that R under addition is isomorphic to R⁺ under multiplication
- 16. Prove that every subgroup of an abelian group is a normal subgroup
- 17. If $\phi: G \to G'$ is a group homomorphism, then prove that Ker ϕ is a normal subgroup of G.
- 18. Find all solutions of the equation $x^2+2x+4=0$ in Z_6 .
- 19. Let $\phi: G \to G'$ be a homomorphism, then prove that if $a \in G$ then $a^{-1}\phi = (a\phi)^{-1}$.
- 20. Check whether $\langle Z, +, \cdot \rangle$ is a field. Give reasons to support of your answer.
- 21. Let R be a commutative ring with unity of characteristic 4. Compute and simplify $(a+b)^4$ for $a, b \in R$.
- 22. Find all ideals of Z_{12} .

(8x2=16)

PART C

- III. Answer any six questions. Each question carries 4 marks.
- 23. Show that if H and K are subgroups of an abelian group G then G'= $\{hk/h \in H \text{ and } k \in K\}$ is a subgroup of G
- 24. Let G be a group and $a \in G$. Then $H=\{a^n/n \in Z\}$ is a subgroup of G and is the smallest

- subgroup G that contains a.
- 25. Let G be a cyclic group with n elements and generated by a. Let $b \in G$ and $b = a^s$, then b generates a cyclic subgroup H of G containing $\frac{n}{d}$ elements, where d is the g.c.d of n and

S.

- 26. a). Find all generators of Z₈.
 - b). Find all subgroups of Z₈ and draw the lattice diagram.
- 27. Prove that any infinite cyclic group G is isomorphic to the group Z of integers under addition.
- 28. Prove that a homomorphism ϕ of a group G is a one-one function iff Ker $\phi = \{e\}$.
- 29. Prove that every finite integral domain is a field.
- 30. A). Define characteristic of a ring.
 - B). Prove that if R is a ring with unity 1, then R has characteristic n > 0 iff n is the smallest positive integer such that $n \cdot 1 = 0$.
- 31. Let R be a commutative ring and $a \in R$. Show that $I_a = \{x \in R/ax = 0\}$ is an ideal of R.

(6x4=24)

PART D

- IV. Answer any two questions. Each question carries 15 marks.
- 32. a). Prove that for $n \ge 2$, the number of even permutations in S_n is same as the number of odd permutations.
 - b). Prove that intersection of two subgroups of a group G is a subgroup of G.
- 33. State and prove Cayley's theorem.
- 34. State and prove Fundamental Homomorphism theorem for groups.
- 35. a). Prove that if R is a ring with unity and N is an ideal of R containing a unit then N = R. b). Prove that M is a maximal normal subgroup of G iff G/M is simple.

(2x15=30)