66.4

Reg. N	ſО	:	•••	 ••	•••	 •••	•••	••	••	••	 ••	••	•
Name	:			 		 	•••				 		

BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, NOVEMBER 2024

2022 ADMISSIONS REGULAR

SEMESTER V - CORE COURSE (MATHEMATICS) MT5B08B18 - Abstract Algebra

Time: 3 Hours Maximum Marks: 80

Part A

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- 1. Give an example of an abelian group which is not cyclic.
- 2. Calculate the number of different commutative binary operations that can be defined on a set S of two elements ?
- 3. Define transposition.
- 4. Define the orbits of a permutation.
- 5. List the generators of a cyclic group having order 16.
- 6. Compute the gcd of 58 and 68.
- 7. Define normal subgroup.
- 8. Define inner automorphism of a group G.
- 9. Find the index of < 3 > in the group \mathbb{Z}_{24}
- 10. Let $\mu = (1, 2, 4, 5)(3, 6)$ in S_6 . Find the index of $<\mu>_{\rm in} S_6$.
- 11. Define the characteristic of a ring.
- 12. Determine whether the matrix ring $M_2(\mathbb{Z}_2)$ have divisors of zero?

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. Show that the inverse of each element is unique in a group.
- 14. Let G be the multiplicative group of all invertible $n \times n$ matrices with entries in $\mathbb C$ and let T be the subset of G consisting of those matrices with determinant 1. Show that T is a subgroup of G.
- 15. Prove or disprove: A group is cyclic if and only if it is abelian.
- 16. Let A be a nonempty set and let S_A be the collection of all permutations of A. Deduce that S_A is a group under permutation multiplication.
- 17. Find all subgroups of \mathbb{Z}_{12} and draw the lattice diagram
- 18. Let ϕ be a homomorphism of a group G into a group G'. If K' is a subgroup of $G'\cap \phi[G]$, then prove that $\phi^{-1}[K']$ is a subgroup of G.
- 19. Find all cosets of the subgroup $<18>_{
 m of}\mathbb{Z}_{36}$
- 20. Define ideal. Show that $n\mathbb{Z}$ is an ideal of \mathbb{Z} .
- 21. If ${\it R}$ is a ring with additive identity 0, then deduce that

$$\begin{array}{l}
a(-b) = (-a)b = -(ab) \\
a(-a)(-b) = ab
\end{array}$$

Part C

- 22. Let F be the set of all real-valued functions with domain $\mathbb R$ and let $\tilde F$ be the subset of F consisting of those functions that have a nonzero value at every point in $\mathbb R$. Determine whether the given subset of F with the induced operation is a subgroup of the group F under addition.
 - a) The subset of all $f \in \tilde{F}_{\mathrm{such that}} f(1) = 0$
 - b) The subset of all $f \in F$ such that f(1) = 0
 - c) The subset $ilde{F}$
- 23. a)Explain permutation and its orbits. b)Explain identity permutation. Compute the orbits of the identity permutation on 5 letters. c) Illustrate the definition of cycle with an example. Is multiplication of cycles commutative? Justify your answer.
- 24. If $n \geq 2$, establish that the collection of all even permutations of $\{1,2,3,...,n\}$ forms a subgroup of order $\frac{n!}{2}$ of the symmetric group S_n .
- ^{25.} Establish that M is a maximal normal subgroup of a group G if and only if G/M is simple.