Reg. No :	• •
Name :	

BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, NOVEMBER 2024

2022 ADMISSIONS REGULAR

SEMESTER V - CORE COURSE (MATHEMATICS)

MT5B07B18 - Differential Equations

Time: 3 Hours Maximum Marks: 80

Part A

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- 1. Compute the wronskian and show that e^x , e^{2r} and e^{3r} . Determine whether they are linearly independent.
- 2. Solve $(y^2 + 3) dx + (2xy 4) dy = 0$
- 3. Solve $tan\theta dr + 2rd\theta = 0$.
- 4. Solve the auxiliary equation of $4\frac{d^2y}{dx^2}-12\frac{dy}{dx}+5y=0.$
- 5. Evaluate the Wronskian of {x, 2x, 3x²+3} and check whether they are linearly independent.
- 6. Solve $4\frac{d^2y}{dx^2} + y = 0$.
- 7. Write the linear combination of functions with undetermined coefficients to form the particular integral of the given differential equation $\frac{d^2y}{dx^2} + 9y = e^{3x} + sin3x$ without actually solving it.
- 8. State the two conditions to check the regularity of singular points
- 9. Give an approximate value of Euler's constant
- 10. Write the Bessel's function of the first kind of order 0.
- 11. Write the partial differential equation z = x + y + f(xy)
- 12. Write the partial differential equation $z=ax+a^2y^2+b$

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

13. Solve
$$(2x^2y + y) dx + (2y^3 - x) dy = 0$$

14. Solve
$$x \sin y dx + (x^2 + 1) \cos y dy = 0$$
.

15.
$$\frac{d^2y}{\text{Solve }\frac{dx^2}{dx^2}} - 4\frac{dy}{dx} + 3y = 9x^4 + 4$$

- 16. Given that y = x is a solution of $x^2 \frac{d^2y}{dx^2} 4x \frac{dy}{dx} + 4y = 0$. Evaluate a linearly independent solution by reducing the order.
- Solve the system $2\frac{dx}{dt}-2\frac{dy}{dt}-3x=t$, $2\frac{dx}{dt}+2\frac{dy}{dt}+3x+8y=2$

Solve
$$\frac{dx}{dt} + \frac{dy}{dt} + 2y = sint,$$

$$\frac{dx}{dt} + \frac{dy}{dt} - x - y = 0.$$

19. Compute the power series solution of
$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$$
.

20. Solve
$$(y+2) p - (x+2) q = x - y$$

$$\frac{dx}{\text{Solve the partial differential equation}} \frac{dx}{x(z^2-y^2)} = \frac{dy}{y\left(x^2-z^2\right)} = \frac{dz}{z(y^2-x^2)}.$$

Part C

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

- 22. Solve (6x+4y+1)dx+(4x+2y+2)dy=0.
- ^{23.} a) Given that $y=x^2$ and $y=x^5$ are linearly independent solutions of the corresponding

homogenous equation of $x^2\frac{d^2y}{dx^2}-6x\frac{dy}{dx}+10y=3x^4+6x^3$. Compute the general solution

b) Solve
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 10sin4x$$

24. Use Frobenius method to solve $x^2\frac{d^2y}{dx^2} + (x^2 - 3x)\frac{dy}{dx} + 3y = 0.$

25. Solve a)
$$x^2(y-z)p + y^2(z-x)q = z^2(x-y)$$

b) $(x^2-y^2-z^2)p + 2xyq = 2xz$