20/11

TB243953E

Ou

Reg. N	10	•
Name	:	

BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, NOVEMBER 2024 2023 ADMISSIONS REGULAR

SEMESTER III - CORE COURSE (STATISTICS)

ST3C03B23 - Probability Distributions

Time: 3 Hours

Maximum Marks: 80

Part A

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

- 1. Define mathematical expectation.
- 2. Find the m.g.f of Y=2X-5
- 3. Define moment generating function of a random variable.
- 4. Express mean of a random variable in terms of its m.g.f.
- 5. Define Poisson Distribution. Also obtain its moment generating function.
- 6. Show that for the Geometric distribution P(x+1) = qP(x)
- 7. If X and Y are independent Poisson variates with means 2 and 3 respectively find the mean and variance of 2X+ 3Y.
- 8. State and prove the additive property of the gamma distribution.
- 9. If X follows Uniform distribution over [0,1], then state the distribution $Y = -2 \log X$.
- 10. Obtain the mgf of a gamma distribution with parameter p.
- 11. State the assumptions in the Lindberg-Levy form of Central limit theorem.
- 12. Define convergence in probability

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

- 13. Define characteristic function. Prove any two properties?
- 14. Find the moment generating function of a random variable X whose p.d.f is $f(x) = a^x b$; $x = 0,1,2,\ldots$, where a+b=1. Hence find V(X).
- 15. For a random variable X, we have $2\log M_X(t) = 30t + 90t^2$. Find its mean, variance and third central moment.
- 16. If X and Y be two independent random variables each representing the number of failures preceding the first success in a sequence of bernoulli trails with p as probability of success in a single trial and q probability of failure, show that $P(x = y) = \frac{p}{1+q}$
- 17. Define a Bernoulli random variable. Show that sum of independent Bernoulli random variables follow Binomial distribution.
- 18. Show that Beta distribution of the first type can be obtained from Beta distribution of the second type by means of a transformation.
- 19. Find the mean and variance of the Beta distribution of the first type.
- 20. A distribution with unknown mean μ and has variance equal to 1.5. By using central limit theorem find how large a sample should be taken inorder that the probability will be atleast 0.95 that the sample mean will be within 0.5 of the population mean.
- 21. State central limit theorem and its assumptions

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

22. The following table presents the bivariate distribution of a pair of random variables (X,Y). Calculate E(X), E(Y), correlation between X and Y and also V(X/Y).

	Х					
		0	1	2		
Υ	0	.01	.01	.02		
	1	.22	.10	.43		
	2	.07	.08	.06		

23. 1) Fit a Poisson Distribution to the following data and calculate the theoretical frequencies.

х	0	1	2	3	4
F	122	60	15	2	1

- 2) For the Poisson distribution with mean m , find eta_1 and eta_2 .
- 24. a) Define Normal Distribution. b)State the conditions at which Binomial Distribution tends to Normal Distribution.
 - c) Show that binomial distribution tends to Normal Distribution.
- 25. A random sample of size 100 is taken from an infinite population with mean 75 and variance 256
 - (a) Using Tchebychev's inequality, find P[67 < $ar{X}$ < 83]
 - (b) Using Central limit theorem, find P[67 < $ar{X}$ < 83]