Reg. No :....

Name :....

BACHELOR'S DEGREE (C.B.C.S) EXAMINATION, NOVEMBER 2024

2023 ADMISSIONS REGULAR

SEMESTER III - CORE COURSE MATHEMATICS MT3C03B23 - Calculus

Time: 3 Hours Maximum Marks: 80

Part A

I. Answer any Ten questions. Each question carries 2 marks

(10x2=20)

1.
$$y = \frac{\log x}{x}$$
 find $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$.

3. Find the nth derivative of
$$e^{3x} sin(x+2)$$

4. Evaluate
$$\frac{\partial w}{\partial u}$$
 where $w=\sin(2x-y)$, $x=u+\sin v$, $y=uv$.

Ta selli

5.
$$\frac{\partial f}{\operatorname{Find} \frac{\partial f}{\partial x}} \text{ and } \frac{\partial f}{\partial y} \text{ , where } f(x,y) = \frac{x}{x^2 + y^2}.$$

6. Evaluate
$$\dfrac{dw}{dt}$$
 , where $w=xy+z, x=cost, \ y=sint, \ z=t$

7. Compute the length of the curve
$$y=\int_{-2}^x \sqrt{3t^4-1}dt, \ -2\leqslant x\leqslant -1$$

8.
$$\int_0^3 \sqrt{y+1} dy$$
 Evaluate $\int_0^3 \sqrt{y+1} dy$

9.
$$\int_{0}^{\frac{\pi}{4}} tanx.sec^{2}xdx$$

10. State Domination Rule for Double Integrals.

11.
$$\int_{0}^{1} \int_{1}^{2} (x^{2} + y^{2}) dx dy$$
 Evaluate $\int_{0}^{1} \int_{1}^{2} (x^{2} + y^{2}) dx dy$

12.
$$\int_0^2 \int_{-\pi}^0 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\rho^3 sin2\phi) d\phi d\theta d\rho$$

Part B

II. Answer any Six questions. Each question carries 5 marks

(6x5=30)

13. If
$$y = e^{-x}(Ax + B)$$
, prove that $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$.

14. Expand
$$2x^3 + 7x^2 + x - 6$$
 in powers of (x-2).

15.
$$_{\text{If }}y=a(1-cost),x=a(t+sint),_{\text{find}}\frac{d^{2}y}{dx^{2}}.$$

- 16. Show that $w=\sin(x+ct)$ satisfies the equation $\frac{\partial^2 w}{\partial t^2}=c^2\frac{\partial^2 w}{\partial x^2}$.
- 17. $_{\rm if}u=\sin(xy)_{\rm , \, prove \, that}\,u=\sin(xy)_{\rm , \, prove \, that}\,x\frac{\partial u}{\partial x}-y\frac{\partial u}{\partial y}=0$ 18. \pm
- 18. The region bounded by the curve $y=\sqrt{x}$, the x-axis and the line x=4 is revolved about the y axis to generate a solid. Compute the volume of the solid
- 19. Calculate the volume of the solid generated by revolving the region bounded by $y=\sqrt{x}$ and the lines y=1, x=4 about the line y=1
- 20. Compute the area of the region that lies inside the cardioid $r=1+cos\theta$ and outside the circle r=1.
- 21. $\int_0^1 \int_y^{\sqrt{y}} dx dy$ Sketch the region of integration for the integral $\int_0^1 \int_y^{\sqrt{y}} dx dy$ and write an equivalent double integral with order of integration reversed. Also evaluate the integral.

Part C

III. Answer any Two questions. Each question carries 15 marks

(2x15=30)

22. $_{\rm a)lf}y=cos(msin^{-1}x)$, prove that $\left(1-x^2\right)y_{n+2}-\left(2n+1\right)y_{n+1}+\left(m^2-n^2\right)y_n=0$ and then find $y_n(0)$, the nth derivative of y at x=0.

b) If I
$$I_n=rac{d^n}{dx^n}(x^nlogx)$$
 , then prove that $I_n=nI_{n-1}+(n-1)!$

- a) Find all local maxima, local minima and saddle point of $f(x,y)=x^2+xy+y^2+3x-3y+4$. b) Find the shortest distance from the origin to the hyperbola $x^2+8xy+7y^2=225$.
- ^{24.} (a) Calculate the area of the region enclosed by the curve $y=2x-x^2$ and the line y=-3
 - (b) Compute the area of the surface generated by revolving the curve $y=x^3, 0 \le x \le \frac{1}{2}$ about the x-axis.
- 25. `(a) Determine the volume of the region D enclosed by the surfaces $z=x^2+3y^2$ and $z=8-x^2-y^2$.
 - (b) Writw the spherical coordinate equation for the cone $z=\sqrt{x^2+y^2}$