0/2 12.01

TM2437481

Reg. N	o :
Name	

MASTER'S DEGREE (C.S.S) EXAMINATION, NOVEMBER 2024

2023 ADMISSIONS REGULAR

SEMESTER III - CORE COURSE

MATHS MT3C12TM20 - Functional Analysis

Time: 3 Hours Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Show that T: $R^2 \to R^2$ defined by T(x, y) = (ax, ay), where a is a fixed real number, is linear. Also find the range and null space of it.
- 2. Prove that every convergent sequence in a normed space is bounded.
- 3. If X is a compact metric space and MCX is closed then prove that M is compact.
- 4. Let f be a linear functional on n- dimensional vector space X. Find the dimension of N(f).
- 5. If in an inner product space $\langle x, u \rangle = \langle x, v \rangle$, for all x. Prove that u = v.
- 6. Define orthogonal complement of a Hilbert space H. Prove that Y^{\perp} is a closed subspace of H.
- 7. Show that the operator T: $H \rightarrow H'$ which is defined by $T(z) = f(z) = \langle ., z \rangle$ is a conjugate linear isometric bijection.
- 8. Let T: H→ H be a bounded linear operator on a complex Hilbert space H and < Tx, x> is real for all x in H then prove that T is self adjoint.
- 9. Let X be a normed space and $x_0 \in X$ be such that $f(x_0) = 0$, for all f in X'. Prove that $x_0 = 0$.
- 10. Let Y be a closed subspace of a normed space X such that every f ∈ X' which is zero everywhere on Y is zero everywhere on whole space X. Show that Y = X.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Prove that a subspace Y of a Banach space X is complete if and only if Y is closed in X.
- 12. Give examples of a bounded and unbounded linear operators.
- 13. Define algebraically reflexive space. Prove that every finite dimensional vector space is algebraically reflexive.
- 14. Show that in an inner product space $x \perp y$ if and only if for any scalar α , $\|x + \alpha y\| = \|x \alpha y\|$.
- 15. a) State and Prove Bessel's Inequality. b) Give an example where we have strict equality in Bessel's Inequality.
- 16. Let H be a Hilbert space and H contains an orthonormal sequence that is total in H. Prove that H is separable.
- 17. Let X be a normed space and x₀ be any non zero element of X. Prove that there exists a bounded linear functional \widetilde{f} on X such that $\|\widetilde{f}\| = \frac{1}{\|x_0\|}$ and $\widetilde{f}(x_0) = 1$.
- 18. Define adjoint operator. Prove that the adjoint operator T^{x} is linear, bounded and $||T^{x}|| = ||T||$.

- 19. a) State and prove F. Riesz's Lemma.
 - b) Let X be a normed space, the closed unit ball M = $\{x \in X \mid ||x|| \le 1\}$ is compact. Show that X is finite dimensional.
- 20. a) Define B(X,Y) for normed spaces X and Y. b) Prove that B(X,Y) is a normed space. c) In addition if Y is a Banach space, prove that B(X,Y) is a Banach space.
- 21. a) Explain Gram-Schmidt process of orthonormalisation.
 - b) Orthonormalise 1st three terms of the sequence $\{x_0, x_1, x_2, ...\}$ where $x_t(j) = t^j$ on the interval [-1, 1] with respect to the inner product given by $\langle x, y \rangle = \int_{-1}^1 x(t)y(t)dt$.
- 22. State and prove Hahn Banach theorem for complex vector spaces.