6.1

Reg.	No	

Name :....

MASTER'S DEGREE (C.S.S) EXAMINATION, NOVEMBER 2024 2023 ADMISSIONS REGULAR

SEMESTER III - CORE COURSE MATHEMATICS MT3C14TM20 - Differential Geometry

Time: 3 Hours

Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Sketch the level set for n = 0,1,2 for the function $f(x_1, x_2, ..., x_{n+1}) = x_{n+1}, c = -1,0,1,2$.
- 2. Prove that the extreme points of g on S are the Eigen vectors, where

$$g(x_1, x_2) = ax_1^2 + 2bx_1x_2 + cx_2^2$$
 and $S = f^{-1}(c), f(x_1, x_2) = x_1^2 + x_2^2$

- 3. Let \overline{X} and \overline{Y} be smooth vector fields tangent to S along α , $\alpha: I \to S$ and f be a smooth function along α , then prove that $(\overline{X} + \overline{Y})' = \overline{X}' + \overline{Y}'$.
- 4. Let \overline{X} and \overline{Y} be smooth vector fields tangent to S along α , $\alpha:I\to S$ and f be a smooth function along α , then prove that $(\overline{X}.\overline{Y})'=\overline{X}.\overline{Y}'+\overline{Y}.\overline{X}'$
- 5. Let $ar{X}_{
 m and} \, ar{Y}_{
 m be\ smooth\ tangent\ vector\ fields\ on\ S\ then\ prove\ that} \, D_{ar{v}}(ar{X} + ar{Y}) = D_{ar{v}} ar{X} + \ D_{ar{v}} ar{Y}$
- 6. Define (i) One-form ω on U. (ii) The differential of f. (iii) The sum of 2 one norms.
- Prove that, Let S be an n-surface in R^{n+1} oriented by the unit normal vector field \overline{N} , let $p \in S$ and $\overline{v} \in S_p$ then for any parameterized curve $\alpha: I \to S$ with $\dot{\alpha}$ $(t_0) = \overline{v}$ for some $t_0 \in I$, $\dot{\alpha}$ (t_0) . $\overline{N}(p) = L_p(\overline{v})$. \overline{v}
- 8. Define
 - i. The image of $d\Psi_p$
 - ii. The tangent space of Ψ at p.
- Find the normal curvature κ(v) for each tangent direction v, the principal curvatures and principal curvature
 directions, and the Gauss- Kronecker and mean curvatures at the given point p of the given n-surface

$$f(x_1, x_2, ..., x_{n+1}) = c_{\text{oriented by}} \frac{f}{\|\nabla f\|_{\text{where}}}$$
$$x_1^2 + \left(\sqrt{x_2^2 + x_3^2} - 2\right)^2 = 1, p = (0, 3, 0).$$

10. Find the normal curvature κ(v) for each tangent direction v, the principal curvatures and principal curvature directions, and the Gauss- Kronecker and mean curvatures at the given point p of the given n-surface

$$f(x_1, x_2, ..., x_{n+1}) = c_{\text{oriented by}} \frac{\nabla f}{|\nabla f|}_{\text{where}}$$
$$x_1^2 + (\sqrt{x_2^2 + x_3^2} - 2)^2 = 1, p = (0, 1, 0)$$

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- Show that the two orientations on n-sphere $x_1^2 + x_2^2 + \dots + x_n^2 + x_{n+1}^2 = r^2$ of radius r>0 given by $\overline{N_1}(p) = (p, \frac{p}{r})$ and $\overline{N_2}(p) = (p, -\frac{p}{r})$.
- 12. Let $S \subseteq R^{n+1}$ be a connected n-surface in R^{n+1} , then prove that there exist on S exactly 2 smooth unit vector fields $\overline{N_1}$ and $\overline{N_2}$ and $\overline{N_2}(p) = -\overline{N_1}(p) \forall p \in S$.
- 13. Give an example of a parameterized curve having constant speed but it is not a geodesic.
- Describe the spherical image when n = 1 and 2 of the given n-surface oriented by $\frac{\nabla f}{||\nabla f||}$, where f is a function defined by the LHS of the given equation, The sphere, $x_1^2 + x_2^2 + \dots + x_{n+1}^2 = r^2, r > 0$.
- 15. Suppose \overline{X} is a smooth unit vector field on an n-surface S in R^{n+1} . Show that $\nabla_{\overline{v}}\overline{X}$ is perpendicular to $\overline{X}(p)\forall v\in S_p, p\in S$. Show further that if \overline{X} is a unit tangent vector field on S, then $D_{\overline{v}}\overline{X}$ is perpendicular to $\overline{X}(p)$.
- 16. Prove that the Weingarten map $L_{m p}$ is self-adjoint.
- 17. Find the normal curvature κ(ν) for each tangent direction ν, the principal curvatures and principal curvature directions, and the Gauss- Kronecker and mean curvatures at the given point p of the given n-surface

$$f(x_1, x_2, ..., x_{n+1}) = c_{\text{ oriented by }} \frac{\nabla f}{|\nabla f|}_{\text{ where }} (\frac{x_1}{a})^2 + (\frac{x_2}{a})^2 + (\frac{x_3}{a})^2 = 1, p = (a, 0, 0)$$

Prove that let S be an oriented n-surface in R^{n+1} , let $p \in S$, and let $\{k_1(p), ... k_n(p)\}$ be the principle curvatures of S at p with corresponding orthogonal principal curvature directions $\{v_1, v_2, ..., v_n\}$, then the normal curvature k(v) in the direction $v \in S_p(||v||=1)$ is given by $k(v) = \sum_{i=1}^n k_i(p) (v.v_1)^2 = \sum_{i=1}^n k_i(p) \cos^2\theta_i$, where $\theta_i = \cos^{-1}(v.v_1)$

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. Prove that, Let $S = f^{-1}(C)_{\text{be an n-surface in}} R^{n+1}_{,\text{ where } f:U \to R \text{ is such that}}$ $\nabla f(q) \neq 0 \ \forall \ q \in S_{\text{ and let}} \overline{X}_{\text{ be smooth vector field on U whose restriction to S is a tangent vector field on S. If <math>\alpha:I \to U$ is any integral curve of $\overline{X}_{\text{ such that}} \propto (t_0) \in S_{\text{ for some}} t_0 \in I_{\text{ then }}$ $\propto (t) \in S \ \forall t \in I_{\text{ .}}$
- 20. State and prove the Existence of a geodesic on the given surface through the given points with given velocity vector.
- 21. Prove that Let C be a connected oriented plane curve and let β:I→C be a unit speed, global parameterization of C then β is either one-one or periodic. Moreover β is periodic if and only if C is compact.
- 22.
- i. Prove that Let S be a compact connected oriented n-surface in R^{n+1} , then the Gauss-Kronecker curvature K(p) of S at p is non-zero for all $p \in S$ if and only if the second fundamental form ζp of S at p is definite for all $p \in S$.
- ii. Prove that on each component oriented n-surface S in R^{n+1} there exists a point p such that the second fundamental form at p is definite.