TB25034W	TR	25	03	4W
-----------------	----	----	----	----

Reg. No:	Reg.
Name:	Nam

B. Sc. DEGREE (C.B.C.S.S) EXAMINATION, MARCH 2025 (2016 and 2017 Admissions Supplementary) SEMESTER VI. – CORE COURSE (MATHEMATICS)

MT6B10B-COMPLEX ANALYSIS

Time: 3 Hours

Maximum Marks: 80

PART A

I. Answer all questions. Each question carries 1 mark

- 1. Define hyperbolic tan function of a complex variable.
- 2. State Cauchy-Goursat theorem.
- 3. Write the nature of the singularity of the function $f(z) = e^{1/z}$. $0 < |z| < \infty$.
- 4. Separate into real and imaginary parts f(z) = 2z + 1..
- 5. Find the limit of the sequence $z_n = \frac{1}{n^3} + i$, $n = 1, 2 \dots$
- 6. Write the Maclaurin's expansion of the function $\frac{1}{1-z}$, |z| < 1.

(6x1=6)

PART B

II. Answer any seven questions. Each question carries 2 marks

- 7. Find the derivative of $(2z^2 + i)^5$.
- 8. If c is the positively oriented unit circle |z| = 3, then find the value of $\int_c \frac{1}{z-1} dz$.
- 9. Evaluate $\int_c \frac{z}{9-z^2} dz$, where C is the positively oriented circle |z| = 2.
- 10. State Fundamental theorem of algebra.
- 11. Find $\lim_{n\to\infty} -2 + i \frac{(-1)^n}{n^2}$
- 12. Find the residue of $\frac{1}{z+z^2}$ at z=0.
- 13. State Jordan's Lemma
- 14. Verify Cauchy Riemann equations for f(z) = 3x + y + i(3y x)...
- 15. Show that $\frac{e^z}{z^2} = \frac{1}{z^2} + \frac{1}{z} + \frac{1}{21} + \frac{z}{31} + \cdots$
- 16. Expand the function $f(z) = \frac{1+2z^2}{z^3+z^5}$ in powers of z.

(7x2=14)

PART C

III. Answer any 5 questions. Each question carries 6 marks

- 17. Show that $e^{i\frac{\pi}{2}} = i$
- 18. State and prove Liouville's theorem.
- 19. Derive the Taylor series representation of sinz in powers of z.
- 20. Evaluate the integral $\int_C \frac{dz}{z(z-2)^4}$, where C is the positively oriented circle |z-2|=1.
- 21. State and prove Cauchy's residue theorem.
- 22. Find the harmonic conjugate of $u(x, y) = y^3 3x^2y$.
- 23. Give Laurent series expansion in power of for the function $f(z) = \frac{1}{z^2(1-z)}$ and specify the regions in which the expansion is valid.
- 24. Evaluate $\int_c f(z)dz$ where $f(z) = \frac{z^2+1}{z^2-1}$ where c: |z| = 2.

(5x6=30)

PART D

IV. Answer any 2 questions. Each question carries 15 marks

- 25. State and prove Taylor's Theorem.
- 26. Show that $\int_{-\infty}^{\infty} \frac{\cos 3x}{(x^2+1)^2} dx = \frac{2\pi}{e^3}$.
- 27. If f(z) is an analytic function inside and on a closed contour C described in the positive sense and z_0 is an interior pt of C, then prove that $f^n(z_0) = \frac{n!}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^{n+1}} dz$.
- 28. State and prove the necessary condition for a function to be analytic.

(2x15=30)