TM241237T

Ne 21.11

Reg. No	•
---------	---

Name :.....

MASTER'S DEGREE (C.S.S) EXAMINATION, NOVEMBER 2024 2024 ADMISSIONS REGULAR

SEMESTER I - CORE COURSE MATHEMATICS MT1C03TM20 - Real Analysis

Time: 3 Hours Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. If f is of bounded variation on [a,b], say $\sum |\Delta f_k| \le M$ for all partition of [a,b], then prove that f is bounded on [a,b]. In fact $|f(x)| \le |f(a)| + M \ \forall x \in [a,b]$.
- 2. Prove or disprove, "f(x)=[x] on [0,2] is of bounded variation"
- 3. Prove or Disprove Riemann Integral is a special case of Riemann-Stieltjes integral.
- 4. If $f \in R(\infty)$, then prove that $|\int_a^b f d \propto | \leq \int_a^b |f| d \propto$
- 5. Suppose $\{f_n\}$ is a sequence of functions defined on E and suppose $|f_n(x)| \le M_n$, $x \in E$, n = 1,2,3,... Then prove that $\sum f_n$ converges uniformly on E if $\sum M_n$ converges.
- 6. If {fn} is a sequence of continuous function on E, and if fn→f uniformly on E then prove that f is continuous on E.
- 7. Prove or Disprove, "The convergent series of continuous function may have a discontinuous sum".
- 8. Define (i) Point wise bounded on E (ii) Equicontinuous on E
- 9. Prove that, $\lim_{x\to 0} (1+x)^{1/x} = e^{-x}$
- 10. Prove or Disprove, "Every Convergent sequence contains a uniformly convergent subsequence".

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

11. Let V be defined on [a,b] as follows:

 $V(x) = V_f(a,x)$ if a<x< b, V(a) = 0. Then prove that

- i. V is an increasing function on [a,b] and
- ii. V-f is an increasing function on [a,b].
- 12. Give an example for a continuous function which is not of Bounded variation and Justify your answer.
- 13. State and prove the necessary and sufficient condition for Riemann-Stieltjes integral.
- 14. If $f\epsilon R(\alpha)$ and $g\epsilon R(\alpha)$ on [a,b] then prove that a $fg\epsilon R(\alpha)$

$$\lim_{\mathbf{b},|f|} \epsilon R(\alpha) \text{ and } \left| \int_a^b f d\alpha \right| \leq \int_a^b |f| \, d\alpha$$

- 15. Show that the sequence of functions $\{f_n\}$ defined on E , converges uniformly on E if and only if for every, there exists an integer N such that $m,n\geq N, x\epsilon E_{\rm implies}|f_n(x)-f_m(x)|\leq \epsilon$
- 16. Let {fn}, {gn} which converge uniformly on some set E, prove that {fngn} doesnot converge uniformly on E.

- 17. If K is compact, If $f_n \in C(K)$ for n=1,2,3,... and if $\{f_n\}$ is point wise bounded and equicontinuous on K, then prove that
 - a. $\{f_n\}$ is uniformly bounded on K
 - b. $\{f_n\}$ contains a uniformly convergent subsequence.
- 18. Given a double sequence $\{a_{ij}\}$, $i=1,2,3,\ldots$, $j=1,2,3,\ldots$, suppose that $\sum_{j=1}^{\infty}\left|a_{ij}\right|=b_i$, $i=1,2,3,\ldots$ and $\sum b_i$ converges. Then show that $\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}a_{ij}=\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}a_{ij}$

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. State and prove Jordan's Theorem.
- 20. State and prove the five properties of the Integrals.
- 21. Suppose $\{f_n\} \to f$ uniformly on a set E in a metric space. Let x be a limit point of E and suppose that $\lim_{t \to x} f_n(t) = A_n, n = 1, 2, 3...$ Show that $\{A_n\}$ converges and $\lim_{t \to x} f(t) = \lim_{n \to \infty} A_n$.
- 22. Suppose $a_0, a_1, ..., a_n$ are complex numbers, $n \ge 1, a_n \ne 0, P(z) = \sum_{n=0}^{\infty} a_k z^k$. Then show that P(z) = 0 for some complex number z.