TM241446J

Reg.	No	:	•••••	 	•••••

MASTER'S DEGREE (C.S.S) EXAMINATION, NOVEMBER 2024

2024 ADMISSIONS REGULAR

SEMESTER I - CORE COURSE MATHEMATICS

MT1C05TM20 - Ordinary Differential Equations

Time: 3 Hours

Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- Write the standard form and normal form of Bessel's equation.
- Show that any equation P(x)y"+ Q(x)y'+ R(x)y = 0 can be made self adjoint by multiplying through by $\frac{1}{P}e^{\int \frac{Q}{P}dx}$. Using Rodrigue's Formula find the first face. 2.
- Using Rodrigue's Formula find the first four Legendre Polynomials
- Show that $\frac{a}{dx}[xJ_1(x)] = xJ_0(x)$ 4.
- Find the value of $J_{-3/2}(x)$ 5.
- Check whether the function $-2x^2 + 3xy y^2$ is positive dfinite, negetive definite or neither.
- $\begin{cases} \frac{dx}{dt}=x\\ \frac{dy}{dt}=-y. \text{ Discuss the stability of critical points. Also sketch a few} \end{cases}$ 7. paths showing the direction of increasing t.
- 8. Determine the nature and stability of the critical point (0,0) on the linear autonomous system
- Write the first order initial value problem and its corresponding integral equation.
- Show that $f(x, y) = y^{1/2}$ does not satisfy a Lipschitz condition on the rectangle $|x| \leq 1$ and $c \leq v \leq d$, where 0 < c < d.

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- Show that the equation P(x)y'' + Q(x)y' + R(x)y = 0 is self adjoint if and only if P'(x) = Q(x). Also write its self adjoint form.
- 12. Find the eigen values and eigen functions for the equation

$$y'' + \lambda y = 0; \ y(0) = 0, y(\pi) = 0$$

Calculate the values of $P_2(x)$, $P_3(x)$, $P_4(x)$ and $P_5(x)$ using the recursion formula $(n+1)P_{n+1}(x)=(2n+1)xP_n(x)-nP_{n-1}(x)$, assuming the value of $P_0(x) = 1$ and $P_1(x) = x$

14. Prove that
$$J_n(x)=rac{1}{\pi}\int_0^\pi cos(n heta-xsin heta)d heta$$

 $\begin{cases} x = x_1(t) & \{x = x_2(t) \\ y = y_1(t) \end{cases} \\ \text{and} \\ \begin{cases} y = y_2(t) \\ \text{of the homogeneous system} \end{cases}$

$$\int_{-t}^{dx} = a_1(t)x + b_1(t)y$$

$$\begin{cases} \frac{dy}{dt} = a_2(t)x + b_2(t)y \\ \text{. Then Prove that } W(t) \end{cases}$$
 is either identically zero or nowhere zero on $[a,b]$.

16.

$$\int_{at} \frac{dx}{dt} = 4x - 3y$$

$$\int_{at} \frac{dy}{dt} = 8x - 6y$$

Find the general solution of

- 17. Find the exact solution of the initial value problem $y'=2x(1+y),\ y(0)=0$. Let $y_0(x)=1$, apply Picard's method to calculate $y_1(x),y_2(x),y_3(x),y_4(x)$.
- 18. Let P(x), Q(x) and R(x) be contonuous functions on an interval $a \le x \le b$. If x_0 is any point in the interval and y_0 and y_0 are any numbers whatever, prove that the initial value problem

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = R(x); y(x_0) = y_0, y'(x_0) = y_0'$$
 has only one and only one solution on the interval $a \le x \le b$.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. a) State and prove Strum Comparison Theorem.
 - b) Let y(x) be the non trivial solution of Bessel's equation $x^2y'' xy' + (x^2 p^2)y = 0$ on positive x axis then prove that every interval of length π contains at most one zero of y(x) if p = 1/2
- 20. a) Derive the Legendre Polynomials
 - b) State and prove the orthogonality properties of Legendre Polynomials
- 21. a) Explain Volterra's Prey Predator Equations
 - b) Eliminate y from Volterra's Prey Predator Equations and obtain the non linear second order equation satisfied by the function x(t).

$$f(x,y)$$
 and $\frac{\partial f}{\partial y}$

Let be continuous functions of x and y on a closed rectangle R with sides parallel to

the axes. If (x_0, y_0) is any interior point of R then prove that there exists a number h>0 with the property that the initial value problem

$$y' = f(x,y)$$
 $y(x_0) = y_0$ has one and only one solution $y = y(x)$ on the interval $|x - x_0| \le h$