TM241662I

OL 14.11

Reg. No :	
Name :	

MASTER'S DEGREE (C.S.S) EXAMINATION, NOVEMBER 2024 2024 ADMISSIONS REGULAR SEMESTER I - CORE COURSE MATHEMATICS

MT1C01TM20 - Linear Algebra

Time: 3 Hours

Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Let U be the vector space of all 2 X 3 matrices over the field F. Form a basis for U. What is its dimension?
- 2. Consider V the set of pairs (x, y) of real numbers and F the field of real numbers. Is V with operations defined by $(x, y) + (x_1, y_1) = (x + x_1, 0)$ and c(x, y) = (cx, 0) a vector space?
- 3. Define a linear functional. Give an example.
- 4. Suppose V is a finite dimensional vector space over a field F. Show that V and V** are isomorphic.
- 5. Consider the linear operator T on R^2 defined by $T(x_1, x_2) = (-x_2, x_1)$. Find the matrix of T in the standard ordered basis of R^2 .
- 6. Let A be an $n \times n$ matrix. Show that det A = det A^t, where A^t is the transpose of A.
- 7. Check whether σ and τ are odd or even where σ and τ are permutations of degree 4 defined by $\sigma_1 = 2$, $\sigma_2 = 3$, $\sigma_3 = 4$, $\sigma_4 = 1$, $\tau_1 = 3$, $\tau_2 = 1$, $\tau_3 = 2$, $\tau_4 = 4$. Also find $\sigma\tau$ and $\tau\sigma$.
- 8. Define a projection of a vector space V. Prove that any projection E is trivially diagonalizable
- g If T is a linear operator on V, then show that range of T and the null space of T are also invariant under T.
- 10. Similar matrices have same minimal polynomial. Explain.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Show that row equivalent matrices have the same row space.
- 12. Find the coordinate matrix of the vector (1, 0, 1) in the basis of C^3 consisting of vectors (2i, 1, 0), (2, -1, 1), (0, 1 + i, 1 i) in that order.
- 13. If V and W are finite dimensional vector space over a field F, prove that V and W are isomorphic if and only if dim V = dim W.
- 14. Consider the linear functionals on R^4 such that $f_1(x_1, x_2, x_3, x_4) = x_1 + 2x_2 + 2x_3 + x_4$, $f_2(x_1, x_2, x_3, x_4) = 2x_2 + x_4$ and $f_3(x_1, x_2, x_3, x_4) = -2x_1 4x_3 + 3x_4$. Find the subspace annihilated by these functionals.
- 15. Prove that an n × n matrix A over a commutative ring with identity, K, is invertible if and only if det A is invertible in K.
- 16. For a positive integer n and a field F prove that if σ is a permutation of degree n, the function $T(x_1, ..., x_n) = (x_{\sigma_1}, ..., x_{\sigma_n})$ is an invertible linear operator on F^n .
- 17. Prove. The minimal polynomial divides the characteristic polynomial for T where T is a linear operator on a finite dimensional vector space V.
- 18. Let V be a finite dimensional vector space and let W_1 be any subspace of V. Prove that there is a subspace W_2 of V such that $V = W_1 \oplus W_2$.

- 19. (a) Consider V the set of all pairs (x,y) of real numbers and F the field of real numbers. Define $(x_1,y_1)+(x_2,y_2)=(x_1+x_2,y_1+y_2)$ and c(x,y)=(cx,y). Is V a vector space?
 - (b) Show that the vectors $\alpha_1 = (1, 1, 0, 0)$, $\alpha_2 = (0, 0, 1, 1)$, $\alpha_3 = (1, 0, 0, 4)$, $\alpha_4 = (0, 0, 0, 2)$ form a basis for R⁴. Find the coordinates of each of the standard basis vector in the ordered basis ($\alpha_1, \alpha_2, \alpha_3, \alpha_4$).
- 20. Let V and W be vector spaces such that dim V = n and dim W = m. Show that L (V, W) is a finite dimensional vector space with dimension mn.
- 21. $\begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix}$ is (b a) (c a) (c b).
 - (b) Using Cramer's rule, solve the given system of linear equations over the field of rational numbers:
 - 3x 2y = 7
 - 3y 2z = 6
 - 3z 2x = -1
- 22. (a) Suppose V be a finite dimensional vector space over a field F and T be a linear operator on V. Then show that T is diagonalizable if and only if the minimal polynomial for T is a product of linear polynomials over F.
 - (b) Find an invertible real matrix P such that $P^{-1}AP$ and $P^{-1}BP$ are both diagonal where $A = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 3 & -8 \\ 0 & -1 \end{bmatrix}$