TB173520C

Reg. No:

Name:

B. Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2018 (2017 Admissions Regular, 2016 Admissions Supplementary/Improvement & 2015 Admissions Supplementary) SEMESTER III – COMPLEMENTARY COURSE (MATHEMATICS) MT3CPC03B - VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND ANALYTICAL GEOMETRY (For Physics and Chemistry)

Time: Three Hours

Maximum Marks: 80

PART A

I Answer all questions. Each question carries 1 mark

- 1. Write the vector function representing Helix.
- 2. Show that $F = (2x 3)i 2j + (\cos z)k$ is not conservative.
- 3. Find the general integrating factor of $x \frac{dy}{dx} + 3y = x^3$
- 4. Write the Bernoulli's equation.
- 5. Find the polar equation of x y = 3

6. What is the eccentricity of the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$

(6x1=6)

PART B

II Answer any seven questions. Each question carries 2 marks

- 7. Find N for the curve $\mathbf{r}(t) = (\cos t + t \sin t)\mathbf{i} + (\sin t t \cos t)\mathbf{j} > 0$.
- 8. Find the derivative of $f(x, y) = xe^{y} + \cos(xy)$ at the point (2, 0) in the direction of a = 3i-4j.
- 9. Evaluate $\int_C (x y + z 2) ds$ where C is the straight line segment from x = t, y = 1 t, z = 1, from (0,1,0) to (1,0,0).
- 10. Find the work done by **F** over the curve in the direction of increasing t where $\mathbf{F} = 2\mathbf{y} \mathbf{i} + 3\mathbf{x} \mathbf{j} + (\mathbf{x}+\mathbf{y})\mathbf{k}, \mathbf{r}(t) = (\cos t) \mathbf{i} + (\sin t)\mathbf{j} (\frac{t}{6})\mathbf{k}, \ 0 \le t \le 2\pi$.
- 11. Find the outward flux of the field $\mathbf{F}(x,y) = x\mathbf{i} + y^2\mathbf{j}$ across the square bounded by the lines $x = \pm 1$ and $y = \pm 1$.
- 12. Solve $(x + \sin y)dx + (y^2 + x \cos y)dy = 0$

13. Solve
$$y - px = \frac{p}{1+p}$$

- 14. Find the centre, vertices of the hyperbola $x^2 y^2 2x + 4y = 4$
- 15. The parabola $x^2 = -4y$ is shifted left 1 unit and 3 unit to generate the parabola $(x + 1)^2 = -4(y 3)$. Find the vertex, foci and directrix of new parabola.
- 16. Write the parametric representation of the hyperbola $x^2 y^2 = 1$

(7x2=14)

P.T.O

PART C

IV Answer any five questions. Each question carries 6 marks

- 17. The velocity of a particle moving in space is given by $\frac{dr}{dt} = \cos t \mathbf{i} \sin t \mathbf{j} + \mathbf{k}$. Find the particles position as a function of t if r=2i + kwhent = 0.
- 18. Find the curvature for the curve $r(t) = e^{t} \cos t i + e^{t} \sin t j + 2k$.
- 19. Find the area of the surface cut from the paraboloid $x^2+y^2-z=0$ by the plane z=2.
- 20. Use divergence theorem to find the outward flux F across the boundary of the region D, where $\mathbf{F} = (\mathbf{y} - \mathbf{x})\mathbf{i} + (\mathbf{z} - \mathbf{y})\mathbf{j} + (\mathbf{y} - \mathbf{x})\mathbf{k}$ and D is the cube bounded by the planes $\mathbf{x} = \pm 1, \mathbf{y}$ $=\pm 1$ and $z = \pm 1$.
- 21. Solve $x\frac{dy}{dx} 2y = \frac{3y^4}{x}$, $y(1) = \frac{1}{2}$ 22. Solve(x + y)dy + (x y)dx = 0
- 23. Solve $x(\frac{dy}{dx})^3 12\frac{dy}{dx} 8 = 0$
- 24. Convert the following equation to polar equation a) $(x-2)^2 + y^2 = 4$ b) $x^2 - y^2 = 1$

(5x6=30)

PART D

IV Answer any two questions. Each question carries 15 marks

- 25. Find T N and κ for the space curve $r(t) = (3 \sin t) i + (3 \cos t) i + 4 t k$
- 26. Use stoke's theorem to calculate the circulation of the field $F = 2y i + 3x j z^2 k$ around the curve $C = x^2 + y^2 = 9$ in the xy plane counter clock wise.
- 27. Sketch the ellipse which include the directrix that corresponds to the focus at the origin 25 400 (a)

a)
$$r = \frac{10-5\cos\theta}{10-5\cos\theta}$$
 (b) $r = \frac{100}{16+8\sin\theta}$

28. Solve the differential equation a) $y^2 - 1 - p^2 = 0$ b) $\frac{x}{y}(\ln x - \ln y - 1)dy = -dx, y(1) = e$

(2x15=30)