TM244498V Reg. No :.....

Nama	
IVALITE	

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2024 2022 ADMISSIONS REGULAR SEMESTER IV - Physics

PH4E03TM20 - Nanostructures and Materials Characterisation

Time: 3 Hours Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Briefly outline any three size effects observable in the formation of nanostructures from bulk materials.
- Write a short note on superfluid clusters.
- 3. Define the two approaches for the synthesis of nanoparticles.
- 4. Briefly explain the structure of fullerene and superconductivity exhibited by them.
- 5. Briefly explain various nanostructured thermal devices.
- 6. Illustrate hypsochromic and bathochromic shift.
- 7. Give an account of the theory of chemiluminescence. List out the factors that affect the rate of reaction.
- 8. Outline the principle of pH measurements.
- 9. Explain how x-rays and electrons give rise to diffraction patterns from crystals.
- 10. While electron beam strikes any material, a variety of processes can take place. Explain any three of them.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Illustrate an experiment used to estimate the magic numbers of metal nano clusters.
- 12. Briefly explain sol gel method of preparation for nanoparticles. Also mention the factors affecting the process.
- 13. Explain the vibrational and mechanical properties of CNT.
- 14. Illustrate the structure of SWNT with the help of circumferential vector.
- 15. Illustrate various transitions and phenomenon using Jablonski diagram.
- 16. Describe the various factors that affect fluorescence.
- 17. Using a schematic diagram, explain the working principle of the technique used in identifying the magic numbers of nanoclusters of copper.
- 18. Give a detailed account of Potentiometry.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. Outline the relevant theory that depicts how quantum mechanics is applied to nanoscience.
- 20. Explain the principle of GMR and hence illustrate spin valve transistors.
- 21. Explain the relevance of each component in a spectrophotometer and its types and advantages.
- 22. Write an essay on XRD as a characterization tool in nanoscience.

