#### TM244449W

| Reg. No |  |
|---------|--|
| Name :. |  |

# MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2024 2020, 2021 ADMISSIONS SUPPLEMENTARY

# M. Sc. Physics SEMESTER IV - ELECTIVE COURSE

PH4E03TM20 - Nanostructures and Materials Characterisation

Time: 3 Hours Maximum Weight: 30

#### Part A

#### I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Outline the significance of heterostructures in electronics.
- 2. Explain the term Unipolar lasers.
- 3. Explain molecular beam epitaxy in nanomaterial synthesis.
- 4. Explain the terms Neel's temperature, blocking temperature and magnetic anisotropy.
- 5. Discuss superhydrophobic effect.
- 6. Explain the significance of LPDA in spectrophotometers.
- 7. Briefly explain quantum efficiency of fluorescence. Suggest any two ways to increase the efficiency of fluorescence.
- 8. Write notes on any two possible reasons for broadening of XRD peaks.
- 9. Scanning Tunneling microscopy is so unique that it can be used both for imaging and fabrication of certain types of nanostructures. Explain.
- 10. While electron beam strikes any material, a variety of processes can take place. Explain any three of them.

#### Part B

## II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Highlight the importance of quantum dots and quantum wires in electronics.
- 12. Explain chemical vapor deposition technique with the help of a schematic diagram.
- 13. Explain the vibrational and mechanical properties of CNT.
- 14. Illustrate the structure of SWNT with the help of circumferential vector.
- 15. Illustrate the principle of thermal lens spectroscopy.
- 16. Define fluorescence quenching and hence explain static and dynamic quenching.
- 17. Derive Debye Scherrer formula. What errors are possible in crystallite size measurements?
- 18. Using a schematic diagram, explain the working principle of the technique used in identifying the magic numbers of nanoclusters of copper.

## Part C

# III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. Using a schematic diagram, explain how Electron Beam Lithography results in smaller feature sizes in quantum structures used in electronics.
- 20. Explain the principle of GMR and hence illustrate spin valve transistors.
- 21. Briefly discuss the theoretical and chemical aspects of fluorescence.
- 22. Give a detailed description of mass spectrometry explaining how mass spectra can be correlated to magic numbers and molecular structures.

