

Reg. N	lo :
Name	•

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2024

2022 ADMISSIONS REGULAR

SEMESTER IV - Mathematics

MT4E01TM20 - Multivariate Calculus and Integral Transforms

Time: 3 Hours Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Let $R = (-\infty, \infty)$. Assume that $f \in L^2(R)$ and $g \in L^2(R)$. Then prove that the convolution integral exists for each x in R and the function h is bounded on R.
- 2. Define Fourier Transforms. Derive the inversion formula for Fourier Transforms.
- 3. Find the Laplace Transform of the given functions
 - i) eat
- ii) cos at
- iii)sin at
- iv) tⁿe^{at}
- 4. Derive the Jacobian matrix of a function $f:R^n \to R^m$ at a point **c** with total derivative **T**.
- 5. Let **f** be a function with values in R^m which is differentiable at each point of **c** in R^n with total derivative **T**. Define m(**T**), Jacobian matrix of **f** at **c**. Also represent the jacobian matrix in terms of gradient vector.
- 6. Compute the gradient vectors for the function

$$f(x,y) = \begin{cases} xy \sin \frac{1}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

- 7. Verify the mixed partial derivatives $D_{1,2}f$ and $D_{2,1}f$ are equal for the function $f(x,y) = \tan(x^2/y)$; $y \neq 0$
- 8. Let f be a complex valued defined for each complex $z\neq 0$ by the equation f(z)=1/z. Show that $J_f(z)=-|(z)|^{-4}$
- 9. Define k- cell. Derive integral of f over a k- cell.
- 10. Define k-form of an open set E in Rⁿ.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

11. State and prove Weierstrass Approximation theorem.

12.
$$\frac{\frac{2}{\pi} \int_0^\infty \frac{\sin v \cos v x}{v} dv = \begin{cases} 1 & if -1 < x < 1 \\ 0 & if |x| > 1 \\ 1/2 & if |x| = 1 \end{cases}.$$
 Show that

- 13. Show that if f is differentiable at c, then f is continuous at c.
- 14. Let u and v be two real valued functions defined on a subset S of the complex plane. Assume that u and v are differentiable at an interior point c of S and the partial derivatives satisfy the Cauchy-Riemann Equations at c. Prove that $f(c) = D_1 u(c) + i D_1 v(c)$.
- 15. Let $f: S \to \mathbb{R}^m$ be differentiable at an each point of S where S is an open connected subset of \mathbb{R}^n . If f'(c) = 0, for each c in S. Prove that f is a constant on S.
- 16. Let A be an open subset of R^n and assume that $f: A \to R^n$ is continuous and has finite partial derivatives $D_j f_i$ on A. If $J_f(x) \neq 0$ for each x in A, prove that f(A) is open.
- 17. For every $f \in \zeta(I^k)$, Prove that L(f) = L'(f).

18. a) If ω and λ be k- and m- forms respectively of class ζ' in E, prove that $d(\omega \wedge \lambda) = (d\omega) \wedge \lambda + (-1)^k \omega \wedge d\lambda$ b) If ω is of class ζ'' in E, prove that $d^2\omega = 0$.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. a) Define convolution of two Lebesgue integrable function f and g on (-∞,∞).Prove that convolution is commutative. b) State and Prove Convolution Theorem for Fourier Transforms.
- 20. Let f and D_2F be continuous on a rectangle [a,b]x[c,d]. Let p and q be differentiable on [c,d] where $p(y)\epsilon$ [a,b]

 $F(y)=\int_{p(y))}^{q(y)}f(x,y)dx$ and q(y) ϵ [a,b] for each y in [c,d]. Define F by the equation if y ϵ [c,d]. Show that F'(y) exist for each y in (c,d) and is given by

$$F'(y) = \int_{p(y))}^{q(y)} D_2 f(x, y) dx + f(q(y), y) q'(y) - f(p(y), y) p'(y)$$

- 21. a) Define mixed partial derivatives. Show that $D_{r,k}$ is not necessarily same as $D_{k,r}$ for every function f b) If both partial derivatives D_r and D_k exist on an n-ball B(c) and if both $D_{r,k}$ and $D_{k,r}$ are continuous at c then, show that $D_{r,k}$ f(c)= $D_{k,r}$ f(c).
- 22. a) Suppose T is a ζ' mapping of an open set E in Rⁿ into an open set V in R^m, S is a ζ' mapping of V into an open set W in R^p, and ω is a k-form in W, so that ω_s is a k-form in V and both $(\omega_s)_T$ and ω_{ST} are k-forms in E, where ST is defined by (ST)(x) = S(T(x)). Then prove that $(\omega_s)_T = \omega_{ST}$.
 - b) Suppose T is a ζ' mapping of an open set E in \mathbb{R}^n into an open set V in \mathbb{R}^m , \varnothing is a k- surface in E, and $\omega = \int_{\mathcal{Q}} \omega = \int_{\mathcal{Q}} \omega = \int_{\mathcal{Q}} \omega$ is a k- form in V. Prove that

