		_			_	_		_
TN	Л	Z	4	4	5	6	4	r

Reg. No	
Name :	

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2024 **2022 ADMISSIONS REGULAR**

SEMESTER IV - CORE COURSE MATHEMATICS

MT4C16TM20 - Spectral Theory

Time: 3 Hours

Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Show that T: $R^2 \rightarrow R$ defined by $(x_1, x_2) \rightarrow x_1$ is open.
- 2. Let $T \in B(X,Y)$ and (x_n) be a sequence in X where X and Y are normed spaces. If $x_n \stackrel{u}{\longrightarrow} x_0$. Prove that $Tx_n \stackrel{\Psi}{\to} Tx_0$
- 3. Give an example of a bounded linear operator, which is not closed.
- 4. Prove that point spectrum is the set of all eigen values of T.
- 5. Find the eigen values of the identity operator on a normed space X.
- 6. Let A be a complex Banach Algebra with identity e, prove that the set of all invertible elements of A is an open subset of A.
- 7. prove that $C(X,Y) \subset B(X,Y)$, where X and Y are normed spaces.
- 8. Let $T:I^2 \to I^2$ be defined by $x=(\xi_i)$, $y=(\eta_i)=Tx$, $\eta_{2k}=\xi_{2k}$ and $\eta_{2k-1}=0$ for $k=1, 2, 3, \ldots$ Find $N(T_\lambda^n)$.
- 9. Prove that two closed subspaces Y and V are orthogonal if and only if the corresponding projections satisfy $P_Y P_V = 0$
- 10. Show that if $T \ge 0$, then $(I+T)^{-1}$ exists.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Prove that strong convergence implies weak convergence. Is the converse true? Justify your answer.
- 12. a) Define a closed linear operator, b) State and prove closed graph theorem.
- 13. Prove that the spectrum of a bounded linear operator T on a complex Banach space X is closed.
- 14. Let A be a complex Banach algebra with identity e and $x \in A$, then prove that $\sigma(x)$ is compact.
- 15. Prove that a linear operator T: $X \rightarrow Y$ is compact if and only if T maps every sequence (x_m) onto a sequence (Tx_m) which has a convergent subsequence where X and Y be normed spaces.
- 16. Prove that a compact linear operator from a normed space X into a Banach space Y has a compact extension on the completion of X.
- 17. Prove that the residual spectrum of a bounded self adjoint linear operator on a complex Hilbert space is empty.
- 18. If P₁ and P₂ are projection of H onto Y₁ and Y₂ respectiecely with P₁P₂ = P₂P₁. Prove that P₁ + P₂ P₁P₂ of H onto $Y_1 + Y_2$.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

19. a) Define contraction on a metric space. b) Prove that contraction T on a metric space X is continuous. c) State and prove Banach Fixed Point Theorem.

- 20. a) Suppose X is a complex Banach space , $T \in B(X,X)$ and $p(\lambda) = \alpha_n \lambda^{n} + \alpha_{n-1} \lambda^{n-1} + \dots + \alpha_0$ ($\alpha_n \neq 0$) then prove that $p(\sigma(T)) = \sigma(p(T))$.
 - b) Show that eigen vectors x_1, x_2, \dots, x_n corresponding to different eigen values $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$ of a linear operator T on a vector space X constitute a linear independent set.
- 21. Let X be a metric space and B $\subset X$. Prove the following:
 - a) If B is relatively compact, then B is totally bounded.
 - b) If B is totally bounded and X is complete, then B is relatively compact.
 - c) If B is totally bounded, for every $\varepsilon > 0$, there exists a finite ε -net $M\varepsilon \subset B$.
 - d) If B is totally bounded, then B is separable.
- 22. a) Let $T:H\to H$ be a bounded self adjoint linear operator on a complex Hilbert space $H\neq\{0\}$. Prove that $\lambda\in\rho(T)$ if and only if there exists c>0 such that $||T_{\lambda}x||\geq c||x||$ for every $x\in H$.
 - b) Prove that all spectral values a bounded self adjoint linear operator on a complex Hilbert space are real.

