11.4

Reg. No	
Name	

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2024 2022 ADMISSIONS REGULAR

SEMESTER IV - CORE COURSE MATHEMATICS

MT4C17TM20 - Optimization Techniques

Time: 3 Hours

Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Explain general Integer Linear Programming and Mixed Integer Linear Programming problems.
- 2. Explain the terms pruned and fathomed associated with branch and bound method.
- 3. Define (a) Partial Graph (b) Sub graph.
- 4. Prove that the maximum flow in a graph is equal to the minimum of the capacities of all possible cuts in it.
- 5. Explain a cut in the context of maximum flow problem.
- 6. Explain (i) Zero Sum Two Person game (ii) Pay off
- 7. Examine the following pay off matrix for saddle points.

$$\begin{bmatrix} 2 & -1 & -2 \\ 1 & 0 & 1 \\ -2 & -1 & 2 \end{bmatrix}$$

- 8. What are the necessary and sufficient conditions for the local minimum of an unconstrained function in one variable?
- 9. Calculate the value of $f(x) = 2x^3 3x^2 + x 4$ at x = 7 starting from the point $x_0 = 3$.
- 10. Explain the procedure for Golden section search.

Part R

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Maximize $2x_1 + 5x_2$ Subject to $0 \le x_1 \le 8$, $0 \le x_2 \le 8$ and either $4 x_1 \ge 0$ or $4 x_2 \ge 0$.
- 12. Solve by Branch and Bound method.

Maximize
$$z = 2x_1 + 6x_2$$

subject to
$$3x_1 + x_2 \le 5$$
, $4x_1 + 4x_2 \le 9$, x_1 , x_2 non negative integers.

- 13. Explain the concept of Duality in Maximum Flow Problem.
- 14. Find the minimum path from v₁ to v₈

Arc	(1,2)	(1,3)	(1,4)	(2,3)	(2,6)	(2,5)	(3,5)	(3,4)	(4,7)
Length	1	4	11	2	8	7	3	7	3
Arc	(5,6)	(5,8)	(6,3)	(6,4)	(6,7)	(6,8)	(7,3)	(7,8)	
Length	1	12	4	2	6	10	2	2	

15. Applying the notion of dominance simplify the following pay off matrix.

$$\begin{bmatrix} 4 & -8 & 7 & -2 \\ 3 & -9 & 2 & -3 \\ -2 & 6 & 8 & 2 \end{bmatrix}$$

16. Find the saddle point, if any, of the following game. Find the optimal strategies and value of the game.

$$\begin{bmatrix} 5 & 1 \\ 3 & 4 \end{bmatrix}$$

17. Solve using Newton's method. Minimize $2(x_1 + x_2)^2 + 2x_1^2 + 2x_2^2$ with initial point (5,2).

18. Maximize $f(x) = 3x_1^2 + x_2^2 + 2x_1x_2 + 6x_1 + 2x_2$ subject to $2x_1 - x_2 = 4$ using Lagrange multipliers.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

19. Solve by cutting plane method : Maximize $3x_1 + 4x_2$ subject to $2x_1 + 4x_2 \le 13$, $-2x_1 + x_2 \le 2$, $2x_1 + 2x_2 \ge 1$, $6x_1 - 4x_2 \le 15$, x_1 , $x_2 \ge 0$, x_1 , x_2 integers.

20. Find the maximum non negative flow in the network described below, arc (v_j, v_k) being denoted as (j,k), v_a is the source and v_b the sink.

Arc	(a,1)	(a,2)	(1,2)	(1,3)	(1,4)	(2,4)	(3,2)	(3,4)	(4,3)	(3,b)	(4,b)
Capacity	8	10	3	4	2	8	3	4	2	10	9

21. Solve graphically the game whose pay off matrix is.

$$\begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 6 \\ 4 & 1 \\ 2 & 2 \\ -5 & 0 \end{bmatrix}$$

22. Maximize the function $f(X) = -3 X^2 + 21.6 X + 1.0$ with a minimum resolution of 0.50 over 6 functional evaluations using Fibonacci search technique. The optimal value of f(X) is assumed to lie in the range $25 \ge X \ge 0$.

