TM243328Z

% 7/10

Reg. No	
Name :	

MASTER'S DEGREE (C.S.S) EXAMINATION, NOVEMBER 2024 2020, 2021, 2022 ADMISSIONS SUPPLEMENTARY SEMESTER III - CORE COURSE PHYSICS

PH3C11TM20 - Atomic and Molecular Physics

Time: 3 Hours

Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Distinguish between equivalent and non equivalent electrons.
- 2. Explain the shortcomings of Bohr atom model.
- 3. Calculate the orbital, spin and total magnetic moments of f electron.
- 4. Illustrate the relevance of isotopic substitution in a non-cyclic polyatomic molecule.
- 5. Hot bands are less intense. Justify.
- 6. Briefly explain the structure of vibrational Raman spectra.
- 7. With a neat diagram, Explain sequences in vibrational coarse structure.
- 8. Explain the reason for chemical shift in NMR.
- 9. Write a note on paramagnetic materials and mention some examples.
- 10. Explain magnetic hyperfine interaction in Mossbauer spectroscopy.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Explain different factors that cause the broadening of spectral line
- 12. Draw the normal Zeeman pattern of Sodium D1 and D2 line.
- 13. Three consecutive lines in the rotational spectrum of a diatomic molecule are observed at 84.544, 101.355 and 118.112cm⁻¹. Assign these lines to their appropriate J" → J' transitions and deduce approximate vibrational frequency of the molecule.
- 14. The fundamental and first overtone transitions of ¹⁴N¹⁶O are centred at 1876.06cm⁻¹ and 3724.20cm⁻¹ respectively. Evaluate the equilibrium vibration frequency, the anharmonicity constant and force constant of the molecule.
- 15. Explain the principle of CARS and PARS.
- 16. Explain how can you determine the dissociation energy from the electronic spectrum of molecules.
- 17. Explain the significance of relaxation process and also explain spin-spin and spin- lattice relaxations.
- 18. Compute the recoil velocity of a free Mossbauer nucleus of mass 1.67 × 10⁻²⁵kg when emitting a \Im ray of 0.1nm wavelength. Calculate the Doppler shift of the \Im ray frequency to an outside observer.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. Derive the interaction energy term in LS coupling. Also find the possible states arising from two equivalent ss electrons .
- 20. Discuss the spectrum of a diatomic vibrating rotator and hence the effects of break down of Born Oppenheimer approximation on the spectrum.
- 21. Explain Rotational Raman spectra for polyatomic molecules.

22. With a neat diagram, explain the principle and working of ESR spectrometer

