06 3.10

Reg.	No	:
Mam	١ ۵٠	

MASTER'S DEGREE (C.S.S) EXAMINATION, NOVEMBER 2024 2020, 2021, 2022 ADMISSIONS SUPPLEMENTARY SEMESTER III - CORE COURSE PHYSICS PH3C09TM20 - Quantum Mechanics – II

Time: 3 Hours

Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Write down the quantization conditions obtained from WKB method in problems with two infinite vertical walls.
- 2. When can WKB method be applied?
- 3. Comment on 'detailed balancing'.
- 4. Give reason for regarding time dependent perturbation as an inexhaustible source or sink of energy.
- 5. Explain the symmetrization requirement for identical particles.
- 6. Write down the properties of Dirac matrices.
- 7. Explain the importance of Klein-Gordon equation.
- 8. The dimension of Dirac matrices have to be even. Why?
- 9. Give the relation between scattering amplitude and differential cross section.
- 10. Briefly discuss Ramsauer-Townsend effect.

(A A B 11) (A A B 11)

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. What are connection formulas? Why are they necessary in WKB approximation?
- 12. Apply stationary state perturbation theory to find the energy of a harmonic oscillator.
- 13. Arrive at an expression for atomic wave function for a photoelectron showing transition from initial state |i> to a continuum of final states.
- 14. If there are two indistinguishable particles in two different orthogonal and normalized states, show that they tend to be closer together.
- 15. Verify that probability density and current density defined for Dirac equation satisfy the continuity equation.
- 16. Bring out the limitations of KG equations. How are they remedied in Dirac equation?
- 17. Describe the perturbation effects when a charged particle is placed in an external electromagnetic field.
- 18. Evaluate the scattering amplitude for Yukawa potential.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. Discuss the barrier penetration problem on the basis of WKB approximation.
- 20. Discuss the decay of initial ket under perturbation. Also obtain an expression for rate of decay as a function of transition probability from initial state to other final states.
- 21. Discuss the phase shift analysis for hard sphere scattering.
- 22. Derive the Dirac equation and hence find the conserved current.