TR	40	40	4	^	^	
I N	n I	7	7		•	~

Reg. No	
Name :	*******************************

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2024 2023 ADMISSIONS REGULAR SEMESTER II - CORE COURSE ST2C07TM - Stochastic Processes

Time: 3 Hours Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- Explain (i) Assessable state (ii) Essential state (iii) Periodic state
- 2. Define a process with independent increment.
- 3. State Basic limit theorem for a M.C.
- 4. Examine whether the population is extinct or not

$$P(s)=(\frac{C}{C+1})e(1-\frac{S}{C+1})-e$$

- 5. Explain random walk in space.
- 6. State and prove the additive property of Poisson process.
- 7. Define continuous time Markov chain.
- 8. Define Birth Death process.
- 9. Explain Renewal process.
- 10. Define Renewal function.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

11. State and prove mean ergodic theorem.

12. $\begin{bmatrix} 0.40 & 0.35 & 0.25 \\ 0.75 & 0.18 & 0.07 \\ 0.15 & 0.12 & 0.73 \end{bmatrix}$ Obtain the stationary distribution πk .

- 13. Let P(s) be the pgf associated with the offspring distribution P_k and $P_n(s)$ is associated with X_n . Then show that $P_n(s) = P_{n-1}[P(s)]$.
- 14. If $H_n(s)$ is the pgf of z_n and P(s) is the p.g.f of offspring then show that $H_n(s) = SP[H_{n-1}(s)]$.
- 15. Derive the waiting time distribution of Poisson process.
- 16. Derive the waiting time distribution for Birth Death process.
- 17. Using Wald's equation evaluate, $E[S_{N(t)+1}]$.
- 18. Explain Kolmogrov's backward differential equation.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. Define (i) Ergodic Markov chain (ii) Define Doubly stochastic Markov chain (iii) Stationary distribution for a MC. (iv) If the states are transient there can not exist a stationary distribution.
- 20. Define random walk. State and prove Polya's theorem for recurrence.

- 21. Find the Steady state solution for M/M/s queue.
- 22. State and prove the central limit theorem for renewal process.

