TN	80		•	7 -	
11	n 7	4	·u	/ h	

Reg. No	•
Name :.	******************************

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2024

2023 ADMISSIONS REGULAR

SEMESTER II - CORE COURSE

ST2C08TM - Multivariate Distributions

Time: 3 Hours

Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- Give the properties of Marshall Olkin bivariate exponential distribution.
- 2. Define second form of Gumbel's bivariate exponential distribution.
- 3. Define first form of Gumbel's bivariate exponential distribution.
- 4. Distinguish between simple correlation and partial correlation.
- 5. Derive the distribution of the sample mean vector \overline{X} if $X \sim N_p(\mu, \Sigma)$
- 6. $Y_{\alpha} = \sum_{\beta=1}^{N} C_{\alpha\beta} X_{\beta}$ Let $C = [C_{\alpha\beta}]_{\text{be an orthogonal matrix and}}$ Let $X_{\alpha\beta} = \sum_{\beta=1}^{N} C_{\alpha\beta} X_{\beta}$, then show that $\sum_{\alpha=1}^{N} Y_{\alpha} Y_{\alpha}' = \sum_{\alpha=1}^{N} X_{\alpha} X_{\alpha}'$

- 7. Explain the derivative of a scalar function with respect to a vector.
- 8. Explain the Jacobian of linear matrix transformation.
- 9. State Cochran's theorem.
- 10. Let $Y'Y=Q_1+Q_2$ where $Q_1\sim\chi^2_{(a)}$ then show that, $Q_2\sim\chi^2_{(n-a)}$, where n is the order of the matrix A.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12

- 11. Given (X, Y) is a Bivariate normal distribution. Show that X+Y and X-Y are independent if and only if $\sigma_x^2 = \sigma_y^2$.
- 12. For Gumbel's first form of Bivariate Exponential distribution find the conditional distribution f(y/x).

13. If
$$X \sim N_p(\mu, \Sigma)$$
, then X can be written as $X = \mu + CY$ where, $\Sigma = CC'$ and $Y \sim N_p(0, I)$

- 14. State and prove the reproductive property of Mutivariate normal distribution.
- 15. Let A and Σ be partitioned in to P_1, P_2, \ldots, P_q rows and columns $P_1 + P_2 + \ldots + P_q = P$.

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1q} \\ A_{21} & A_{22} & \cdots & A_{2q} \\ \cdots & \cdots & \cdots & \cdots \\ A_{q1} & A_{q2} & \cdots & A_{qq} \end{pmatrix}, \quad \sum = \begin{pmatrix} \sum_{11} & \sum_{12} & \cdots & \sum_{1q} \\ \sum_{21} & \sum_{22} & \cdots & \sum_{2q} \\ \cdots & \cdots & \cdots & \cdots \\ \sum_{q1} & \sum_{q2} & \cdots & \sum_{qq} \end{pmatrix}$$

If
$$\sum_{ij} = 0$$
 for $i \neq j$ and if $A \sim W(\Sigma, n)$ then,

Show that $(A_{jj})'s$ are independently distributed as $W(\Sigma_{jj},n)$.

16. Let X be a real symmetric pxp matrix and T is a lower triangular matrix with $t_{jj}>0, j=1,2,\ldots$ then if X

$$dX = 2^{p} \prod_{j=1}^{p} (t_{jj})^{p-j+1} dT$$

17. Show that if $Y\sim N(0,I)$, then a necessary and sufficient condition for the Quadratic form Y'AY to be distributed as a χ^2 is that A is an idem potent matrix.

In this case the degrees of freedom of χ^2 = rank (A) = Trace (A).

18. Write a short note on the distribution of sample partial correlation coefficient based on N observations.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. Derive the Moment generating function of bivariate normal distribution.
- 20. Derive the Probability density function of a Multivariate normal distribution.
- 21. Derive the p.d.f of Wishart distribution.

= TT' Show that

22. Derive the sampling distribution of partial correlation coefficient for the null case.

