TM242897X

Reg. No	•
Name ·	

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2024 2023 ADMISSIONS REGULAR SEMESTER II - CORE COURSE

PH2C08TM20 - Condensed Matter Physics

Time: 3 Hours

Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- Explain how to confirm whether the sample if FCC or BCC from the XRD results.
- 2. Discuss the terms point group and space group.
- 3. Based on Fermi Dirac statistics, explain the nature of the FD function and how it varies with temperature.
- 4. Show that the wavelength associated with an electron whose energy is equal to the Fermi energy is $2\left(\frac{\pi}{3n}\right)^{1/2}$ where n is the associated quantum number.
- 5. Estimate the magnitude of energy gap in solids using the modified free electron theory.
- 6. Give an account of Bloch oscillators.
- Outline the process of thermal ionization of donors and acceptors.
- 8. A crystal with monoatomic lattice be called as a low pass filter. Justify this statement.
- 9. Enumerate the defects of Debye model of specific heat.
- 10. Briefly discuss Geo and bio magnetism.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Estimate the reciprocal lattice to FCC and BCC systems.
- 12. Explain degenerate and non degenerate states. Taking the example of particle in a cubical box of side a, obtain first few states and present them graphically.
- 13. Derive equations for Density of states of 3D, 2D and 1D electron gas systems.
- 14. If the Fermi energy of electrons in a metal is 7 eV, calculate the Fermi momentum, Fermi velocity and de Broglie wavelength.
- 15. The intrinsic carrier density at 300 K in Si is $1.5 \times 10^{16} / m^3$ and the electron and hole mobility are 0.13 and $0.05 m^2 V^{-1} s^{-1}$ respectively. Calculate the conductivties of intrinsic silicon and that of doped silicon containing 1 donor atom per 10^8 silicon atoms.
- 16. Discuss the effect of variation of relative masses of the two types of atoms and the wavelength of elastic waves of the forbidden gap foe a linear diatomic lattice.
- 17. Define thermal conductivity of a solid. Derive an expression for the same in terms of its specific heat capacity.
- 18. Discuss the thermal excitation of magnons and obtain $T^{3/2}$ law.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

19. Write down the Laue equations and explain their use in analyzing x-ray diffraction results. Explain how Ewald sphere helps in identifying the Bragg reflection conditions in a crystal system.

- 20. Discuss how Kronig Penney model correctly predicts the presence of band gap in the energy dispersion curve of solids.
- 21. Discuss the vibrations of a crystal with linear diatomic lattice. Explain the acoustical and optical branches observed in the spectrum of this lattice.
- 22. Discuss in detail the quantum theory of paramagnetism. Hence explain how the theory account for the behaviour of rare earth ions.