15-6

TM242813P	Reg. No :
11112-720101	1.cg. 110

Nama	
Name	*

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2024 2023 ADMISSIONS REGULAR

SEMESTER II - CORE COURSE PHYSICS

PH2C07TM20 - Thermodynamics and Statistical Mechanics

Time: 3 Hours Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Define entropy and deduce the expression for entropy and heat capacities.
- 2. Examine the attributes for a function to be considered as a function of state.
- 3. Estimate the fluctuation in energy when two systems are brought in contact and kept in isolation from the rest of the universe.
- 4. Explain the term partition function and find the total partition function of a diatomic molecule.
- 5. Obtain the symmetrized wave functions for a two-particle system of (i) bosons (ii) fermions
- 6. State Wein's displacement law.
- 7. Calculate the root mean square speed of hydrogen molecules of mass $3.32 \times 10^{-27} \, \mathrm{kg}$ at $300 \, \mathrm{K}$.
- 8. Define chemical potential. Express it in terms of Gibbs free.
- 9. Express the entropy for a single particle state for fermions in terms of the distribution function.
- 10. Define symmetric breaking field and estimate the critical exponents γ and δ .

Part R

II. Answer any Six questions. Each question carries 2 weights

(6x2=12)

- 11. Gasoline vapor is injected into the cylinder of an automobile engine when the piston is in its expanded position. The temperature, pressure and volume of the resulting gas-air mixture are 40°C, 1105N/m² and 220cm³ respectively. The mixture is then compressed adiabatically to a volume of 40cm³. What are the pressure and temperature of the mixture after the compression? Given the ratio of C_p to C_v is 1.4
- 12. Consider that 10⁻⁶ J of heat is taken from a system at a temperature of 300K and is added to a system at 299K. Determine the change in entropy of the two systems and the factor by which the number of accessible states increases.
- 13. A system has four energy levels which are non-degenerate. The energy levels are $E_1=0$, $E_2=1.4 \times 10^{-23} J$, $E_3=4.2 \times 10^{-23} J$ and $E_4=8.4 \times 10^{-23} J$. Given that the system is at a temperature of 5K, find the probability that the system is in the $E_4=0$ level?
- 14. Suppose there are single-particle energy eigenvalues of 0, ε, 2ε and 3ε which are non-degenerate. A total of 6ε is to be shared between four particles. List the configuration of the particles and their degeneracies for: distinguishable particles, indistinguishable Bose particles, indistinguishable Fermi particles.
- 15. Calculate the partition function in three dimensions for a particle whose energy varies with wave vector $\varepsilon(k) = \alpha k^3$.
- 16. Explain law of mass action with an example.
- 17. Deduce the expression for the Fermi vector and hence calculate the Fermi wave vector and Fermi Temperature of electrons in Magnesium with a number density of conduction electrons is $8.6 \times 10^{28} \, \text{m}^{-3}$.
- 18. Deduce the expression for Helmholtz free energy for phase separation in mixtures.

III. Answer any Two questions. Each question carries 5 weights

(2x5=10)

- 19. Establish the second law of thermodynamics using statistical mechanics.
- 20. Obtain the expressions for thermodynamic quantities for a canonical system in terms of partition function. Apply these formulae for the simplest two level system with non-degenerate quantum states to obtain the expression for heat capacity at constant volume.
- 21. Explain the condition for chemical equilibrium in terms of chemical potential. Discuss any two methods for calculating chemical potential.
- 22. Discuss Ising model and hence deduce the expression for Free Energy for magnetization.

