TM242809K

11.4

Reg. No	•
Name :.	****************

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2024 2023 ADMISSIONS REGULAR SEMESTER II - CORE COURSE PHYSICS

PH2C06TM20 - Quantum Mechanics - I

Time: 3 Hours

Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- Write the postulates associated with the inner product of state kets.
- 2. Comment on the importance of Hermitian operators in quantum mechanics.
- 3. Obtain a relation between position and translation operator.
- 4. Define an energy eigen ket.
- 5. Explain why energy eigen kets are called stationary kets.
- 6. Briefly explain the characteristics of base kets.
- 7. What are the properties of rotation matrices?
- 8. Give any three properties of Clebch Gordon coefficients.
- 9. Show that $[J^2, J_k] = 0$, where k=1,2,3 stand for x, y and z.

10. Explain the term accidental degeneracy for hydrogen atom.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Considering momentum as generator of translation, deduce the commutation relation between momenta in different directions.
- 12. Explain the method of diagonalisation by which the matrix elements of an operator can be found out in a new basis.
- 13. Deduce an expression for time evolution operator and prove its unitarity.
- 14. Derive an expression for the time development of state vectors in Schrodinger picture.
- 15.

$$\prod \frac{(B-b'')}{b'-b''}$$

Comment on the significance of $b' \neq b''$ where $\{|b'| > \}$ are the eigen kets of a Hermitian operator B.

- 16. Discuss briefly the rotations in the two component formalism.
- 17. Explain Pauli's two component formalism.
- 18. Write the radial wave equations for hydrogen atom.

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. Explain the need of a complex abstract space to demonstrate the dynamics of a quantum system using Stern-Gerlach experiment.
- 20. Show that the ground state wave function of a linear harmonic oscillator has gaussian shape.

- 21. What are ladder operators? Use them to find the relation between eigen values of J^2 and J_Z . Find the allowed eigen values of J_Z .
- 22. Show that the uncertainty product of a gaussian wave packet is minimum.

