₹eg.	No	:	••	•••	 	•••	•••	•••	•••	••••	••

Name :.....

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2024 2023 ADMISSIONS REGULAR

SEMESTER II - CORE COURSE

PH2C05TM20 - Mathematical Methods in Physics - II

Time: 3 Hours

Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Show that the function $f(x) = x^2$ satisfies Cauchy Riemann conditions.
- 2. Expand f(z) = 1/(1-z) in a Taylor's series about $z_0 = i$.
- 3. Differentiate essential and removable singularity.
- 4. State and prove Parseval's identity for Fourier series.
- 5. Find L(F'(t)) if $F(t) = e^{5t}$.

6. $J_n(x)$

 $\frac{d}{dx}[x^n f_n(x)] = x^n f_{n-1}(x)$

If is the n th order Bessel function , Show that

- 7. Prove that $\beta(m,n) = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx$
- 8. Show that for x>0, $\Gamma(n+1) = n \Gamma(n)$
- 9. Write any three partial differential equation in Physics
- 10. Find the potential outside a sphere assuming the outside of the sphere is free of charges.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- Show that $\int_{c}^{c} \frac{z^3 + 2z}{(z z_0)^3} dz = 6\pi i z_0$, where c is a closed contour described in positive sense and z_0 is inside the contour.
- 12. State and prove Cauchy's Residue theorem. Evaluate $\int_{c} \frac{5z-2}{z(z-1)} dz$, where c is the circle with z=2.
- 13. Expand output of a half wave rectifier circuit as Fourier series.
- 14. Deduce Laplace transform of $t^n F(t)$ and find $L(t^2 \cos 2t)$.
- 15. $J_{1/2}(x)$

Evaluate

- 16. Find the Hermite polynomials for n=1,2,3.
- 17. Prove that Green's function is symmetric.
- 18. Determine the steady-state temperature distribution in a thin plate bounded by the lines x=0, x=l and y= ∞ which are maintained at zero temperature and y=0 is kept at steady-state temperature f(x)

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

19. Explain Laurent's expansion of a function by deducing the series expansion.

20. Explain Fourier Transform of a function. Find the Fourier tansform of
$$f(x) = 1$$
, $|x| < a$ and deduce 0 , $|x| > a > 0$

$$\int_0^\infty \left(\frac{\sin t}{t}\right) dt = \frac{\pi}{2} \text{ and } \int_0^\infty \left(\frac{\sin t}{t}\right)^2 dt = \frac{\pi}{2}.$$

- 21. Obtain the orthogonality properties of Bessel functions.
- 22. Discuss scattering of charged particle by applying Green's theorem.

