TN	A2	47	57	721

Reg. No	
Name :	

Maximum Weight: 30

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2024 2023 ADMISSIONS REGULAR SEMESTER II - CORE COURSE MT2C09TM20 - Measure Theory and Integration

Time : 3 Hours

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Let A be the set of irrational numbers in the interval [0,1]. Prove that $m^*(A) = 1$.
- 2. Explain the construction of the cantor set C.
- 3. Explain any two properties of outer measure.
- Let f be an extended real valued function measurable on E and let f = g a.e. on E then, show that g is measurable on E.
- 5. Let g be a measurable real valued function defined on E and f a continuous real valued function defined on all of R. Show that the composition f o g is a measurable function on E.
- 6. Define a simple function. Derive the canonical representation of the simple function ϕ .
- 7. Define a measure space. Give an example.
- 8. Describe Dirac measure space.
- 9. Let (X, \mathcal{M}, μ) be a measure space and f be integrable over X. If A and B are disjoint measurable subsets of X, then show that $\int_{A \cup B} f \, d\mu = \int_{A} f \, d\mu + \int_{B} f \, d\mu$.
- 10. Let (X, \mathcal{M}, μ) be a measure space and f a measurable function on X. If f is bounded on X and vanishes outside a set of finite measure then show that f is integrable over X.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Show that translate of a measurable set is measurable.
- 12. Prove that Lebesgue measure is countably additive.
- 13. Prove that integral of non-negative measurable function satisfies additivity over domain of integration.
- For a non-negative measurable function on E, show that $\int_{E} f = 0$ if and only if f = 0 a.e. on E.
- 15. Show that union of a countable collection of measurable sets is measurable with respect to μ *.
- 16. Let μ * be an outer measure on 2^{X} . Then show that the collection \mathcal{M} of sets that are measurable with respect to μ * is a σ algebra.
- Show that if $\psi \leq \varphi$ a.e. on X, then $\int_X \psi \ d\mu \leq \int_X \varphi \ d\mu$ where φ and ψ are nonnegative simple functions on X and (X, \mathcal{M}, μ) is the measure space.
- 18. Let (X, \mathcal{M}, μ) be a measure space and $\{f_n\}$ a sequence of functions on X that is both uniformly integrable and tight over X. If $\{f_n\} \to f$ pointwise a.e. on X and the function f is integrable over X then show that

$$\lim_{n\to\infty} \int_{E} f_n \, d\mu = \int_{E} f \, d\mu.$$

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. (a) Prove that the outer measure of an interval is its length.
 - (b) Show that given any set A and any $\varepsilon > 0$, there exists an open set O containing A such that $m^*(O) \le m^*(A) + \varepsilon$.
- 20. (a)State and prove Fatou's Lemma.
 - (b) Let f and g be integrable over E. Show that for any α and β , the function $\alpha f + \beta g$ is integrable over E and $\int_E \alpha f + \beta g = \alpha \int_E f + \beta \int_E g$. Moreover if $f \leq g$ on E, then show that $\int_E f \leq \int_E g$.
- 21. (a)State and prove Jordan Decomposition theorem.
 - (b) For a Lebesgue measurable set E, define V (E) = $\int_E f \ dm$ where f is a real valued function that is Lebesgue integrable over \mathbb{R} . Show that V is a signed measure on the measurable space (\mathbb{R} , \mathcal{L}). Also find a Hahn decomposition of \mathbb{R} with respect to V and Jordan decomposition of V.
- 22. State and prove Fubini's Theorem.

