				_
TM	24	.28	47	Р

Reg. No	 •••••
B1	

MASTER'S DEGREE (C.S.S) EXAMINATION, MARCH 2024 2023 ADMISSIONS REGULAR SEMESTER II - CORE COURSE MATHEMATICS MT2C07TM20 - Advanced Topology

Time: 3 Hours

Maximum Weight: 30

Part A

I. Answer any Eight questions. Each question carries 1 weight

(8x1=8)

- 1. Prove that a compact space in a Hausdorff space is closed.
- 2. Define (i) Urysohn function. (ii) Extension of a function with example.
- 3. Define (i) Cube (ii) Hilbert Cube.
- 4. Define
 - i. Product topology on πx_i
 - ii. Box

- 5. Prove that the Intersection of any family of boxes is a box and also prove that the Intersection of finite number of large boxes is a large box.
- 6. Prove that, "Sequentially compactness implies Countably Compactness."
- 7. Define Evaluation function of the indexed family.
- 8. Let (X,\mathcal{T}) be a space. Let D be the indiscrete topology on X. Prove that the function $id_X: X \to X$ is \mathcal{T} -D continuous and that the family $\{id_X\}$ distinguishes points of X.
- 9. Let $S: D \to X$ is a net in a space X and for each $n \in D$, $A_n = \{S_m : m \in D, m \ge n\}$ prove that a point $x \in X$ is a cluster point of S iff $x \in \bigcap_{n \in D} \overline{\overline{A_n}}$?
- 10. Prove that the neighborhood system at point x, where x be any point in the topological space X, will form a directed set.

Part B

II. Answer any Six questions. Each question carries 2 weight

(6x2=12)

- 11. Prove that, "Every map from a compact space into a T2-space is closed. The range of such a map is a quotient space of the domain."
- 12. Let A be a subset of a space X and $f:A\to R$ be continous. Then show that any two extensions of f to X agrees on \bar{A}
- 13. Prove that, A topological space is Tychnoff iff each co-ordinate space is so.
- Prove that if each co-ordinate space is T_3 then the topological product has the corresponding property.
- 15. State and prove Urysohn Metrisation Theorem.
- Prove that the Let $\{f_i: X \to Y_i / i \in I\}$ be a family of functions which distinguishes points from closed sets in X then the corresponding evaluation function $e: X \to \prod_{i \in I} Y_i$ is open when regarded as a function from X to e(X).
- 17. Show that if h, h': $X \to Y$ are homotopic and k, k': $Y \to Z$ are homotopic, then k \circ h and k \circ h' are homotopic.

18. Let X be a topological product of a family of spaces X_i , $i \in I$ } prove that $S: D \to X$ converges to a point x in X iff for each $i \in I$ the net π_i S converges to $\pi_i(x)$ in X_i .

Part C

III. Answer any Two questions. Each question carries 5 weight

(2x5=10)

- 19. Show that, if A is a closed subset of a normal space X and suppose $f:A \to [-1,1]$ is a continous function. Then there exist a continous function $F:X \to [-1,1]$ such that $F(x)=f(x) \forall x \in A$. Discuss the same if [-1,1] replaced with (-1,1).
- 20. Prove that, A product of spaces is connected iff each co-ordinate space is connected.
- 21. State and prove Embedding Lemma.
- 22. Given spaces X and Y, let [X, Y] denote the set of homotopy classes of maps of X into Y. (i) Let I = [0, 1]. Show that for any X, the set [X, I] has a single element. (ii) Show that if Y is path connected, the set [I, Y] has a single element.

