\qquad
\qquad

B. Sc DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2018 (2017 Admission Improvement / Supplementary and 2015 \& 2016 Admission Supplementary)
 SEMESTER I - COMPLEMENTARY COURSE (MATHEMATICS)
 MT1CPC01B - CALCULUS
 (Common for Physics and Chemistry)

Time: Three Hours
Maximum Marks: $\mathbf{8 0}$
PART A

I. Answer all questions. Each question carries 1 mark

1. Find $\int_{0}^{\pi}(1+\cos x) d x$.
2. Let f be an even function such that $\int_{0}^{1} f(x) d x=3$. Find $\int_{-1}^{0} f(x) d x$.
3. Find the length of the curve $x=1-t, y=2+3 t, \frac{-2}{3} \leq t \leq 1$
4. If $\lim _{x \rightarrow c} f(x)=L$. Find the value of $\lim _{h \rightarrow 0} f(h+c)$.
5. Find $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}$.
6. State first derivative theorem of local extreme values

PART B

II. Answer any seven questions. Each question carries 2 marks
7. Show that the value of $\int_{0}^{1} \sin \left(x^{2}\right) d x$ cannot possibly be 2 .
8. State Fundamental Theorem of Calculus (Part 1). Use fundamental theorem to evaluate $\frac{d}{d x}\left(\int_{0}^{\sqrt{x}} \cos t d t\right)$
9. Using substitution method evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot \theta \operatorname{cosec}^{2} \theta \mathrm{~d} \theta$
10. Find the length of the curve $y=\frac{4 \sqrt{2}}{3}(x)^{\frac{3}{2}}-1, \quad 0 \leq x \leq 1$.
11. Define the surface area generated by revolving the curve about the x-axis.
12. If $\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}}, \mathrm{x}_{0}=4, \epsilon=0.05$ and $\mathrm{L}=\frac{1}{4}$ find $\delta>0$ such that $0 \leq\left|\mathrm{x}-\mathrm{x}_{0}\right|<\delta \Rightarrow|\mathrm{f}(\mathrm{x})-\mathrm{L}|<\epsilon$.
13. Evaluate $\lim _{x \rightarrow 2^{+}} \frac{x-3}{x^{2}-4}$.
14. For the function $f(x)=\left\{\begin{array}{cc}\frac{|x-4|}{x-4}, & x \neq 4 \\ 0, & x=4\end{array} \quad\right.$ does $\lim _{x \rightarrow 4} f(x)$ exist
15. Show that the function $f(x)=x^{3}+\frac{4}{x^{2}}+7$ has exactly one zero in the interval $(-\infty, 0)$
16. Verify Mean Value theorem for $f(x)=x(x-1)(x-2)$ in the interval $\left[0, \frac{1}{2}\right]$.

PART C

III. Answer any five questions. Each question carries 6 marks

17. Given $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$.Prove that $\lim _{x \rightarrow c}[f(x)+g(x)]=L+M$
18. Find c in the Mean Value Theorem $f(b)=f(a)+(b-a) f(c)$ when $f(x)=x^{3}-3 x^{2}+2 x$, and $a=0, b=1 / 2$
19. Find the equation of tangent line and normal line at the point $(2,4)$ to the curve $x^{3}+y^{3}-9 x y=0$
20. Find the critical points of $f(x)=-x^{3}+12 x+5,-3 \leq x \leq 3$. Identify the intervals on which f is increasing and decreasing. Find the functions local and absolute extreme values.
21. Find the average value of $f(x)=\sqrt{4-x^{2}}$ on $[-2,2]$
22. Using limit of Riemann sums establish the equation $\int_{a}^{b} c \mathrm{dx}=\mathrm{c}(\mathrm{b}-\mathrm{a})$.
23. The region between the curve $y=\sqrt{x}, 0 \leq x \leq 4$ and the x - axis is revolved about the x axis to generate a solid. Find its volume.
24. A pyramid 3 m high has a square base that is 3 m on a side. The cross-section of the pyramid perpendicular to the altitude $x \mathrm{~m}$ down from the vertex is a square $x \mathrm{~m}$ on a side. Find the volume of the pyramid.

PART D

III. Answer any twe questions. Each question carries 15 marks
25. State and prove Mean Value Theorem and hence verify Mean Value Theorem for the function $f(x)=\log x$ on the interval $[1, e]$
26. (a) If $y^{3}-3 a x^{2}+x^{3}=0$, then prove that $\frac{d^{2} y}{d x^{2}}+\frac{2 a^{2} x^{2}}{y^{5}}=0$
(b) Find the slope of the circle $x^{2}+y^{2}=25$ at the point $(-4,3)$
(c) Show that the $(2,4)$ lies on the curve $x^{3}+y^{3}-9 x y=0$. Then find the tangent and normal to the curve at the given point
27. Find the area between the graph of $y=-x^{2}-2 x$ and x-axis over $[-3,2]$
28. Find the surface area generated by revolving the curve $y=2 \sqrt{x}, 1 \leq x \leq 2$ about the x axis

